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0 Motivation

Consider the following simple model for the population dynamics of some species:

xt+1 = r xt (1− xt) , xt ∈ [0, 1] , t ∈ N (0.1)

This model is known as the logistic map. When xt is the (normalized) population at
some time step t then the logistic map can be used to calculate the population after one
additional time step. The factor rxt can be understood as the o�spring, e.g. for r = 2
each individual will have (on average) two o�springs. With this term alone the population
would grow exponentially. This is prevented by the 1 − xt term which can roughly be
understood as starvation due to overpopulation, e.g. if a predator population grows too
large there will not be enough prey to feed all of them. The rate r is bounded between one
and four. For r < 1 the population would shrink exponentially even without the 1 − xt
term. For r > 4 one could reach populations xt+1 > 1. The graph of the logistic map for
r = 3.35 is shown in Fig. 1.

Figure 1: Logistic map for r = 3.35. The two competing terms rxt (o�spring) and 1− xt
(starvation) lead to a downward parabola. The maximum is obtained for xt = 0.5. The
parameter r only stretches the parabola in the up-down direction.

Phenomenology

The long-term qualitative behaviour of a population following the logistic map seems to
depend only on the rate r, not on the initial population. We further observe:

� Fixed points that seem to attract all initial populations for r < 3 (Fig. 2a)

� Low period orbits for 3 < r < 3.59 (Fig. 2b)

� �Chaotic� behaviour for r = 4 (Fig. 2c)

� In the chaotic regime tiny variations of the initial population get quickly ampli�ed.
A given interval of populations seems �to be visited evenly�.
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� Bifurcations: For example at r = 3 the stable �xed point becomes unstable while
a new stable period-2 orbit emerges. In general, the period of the stable orbit is
doubled (see Fig. 2d).

a) r = 2.6, one stable �xed point b) r = 3.35, stable period-2 orbit

c) r = 4, no stable orbit, �chaos� d) Bifurcation: Change in the
qualitative behaviour when varying

r

Figure 2: a) to c) show the long-term behaviour of the logistic map for di�erent values of
r. The blue path shows the stepwise progress of the population. In a) the population is
driven to the stable �xed point marked by the intersection between the parabola and the
identity line. In b) the population �rst approaches the �xed point but is then attracted
by a period-2 orbit. In c) no regularity can be observed. The population seems to visit
all possible values. The transition from the behaviour of a) to b) can be understood with
the bifurcation depicted in d). (Dotted) solid lines represent (un)stable orbits.

1 Dynamical Systems

De�nition A dynamical system is described by:
• a state space M (sometimes: phase space)
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• a family Φt of transformations:

Φt :M→M where t ∈ N (discrete case)

or t ∈ R+ (continuous case)

s.t. 1) Φ0 (x) = x

2) Φt ◦ Φs (x) = Φt+s (x)

Some common cases are:

1. Discrete systems:
t ∈ N, also called maps, completely speci�ed by Φ1 =: f , example: logistic map from
section 0.

2. Flows:
Continuous-time systems de�ned by �rst order di�erential equation

∂tΦ
t (x) = F (x) ,

also completely de�ned by their vector �eld. Example: one dimensional harmonic
oscillator:

3. Hamiltonian �ows:
Flows that originate from classical mechanics. The harmonic oscillator is a repre-
sentative of this special class of �ows.

1.1 Discrete systems

A discrete system is completely speci�ed by its map Φ1 =: f . The time evolution is
generated by repeated application of this map. The sequence of x values obtained this
way is called orbit :

� Let x ∈M. The orbit of x is denoted by:

x, f (x) , f ◦ f (x) , f ◦ f ◦ f (x) , ...

= x0, x1, x2, x3, ...

� An orbit has period p if x0 = xp.

� The period is called a proper period if x0, ...xp−1 are all di�erent.

The goal of this section is to understand the behaviour of the logistic map that we observed
in section 0 and to realize that this behaviour is generic for a large group of similar maps.
To understand the general features of the logistic map, we �rst investigate the tent map.
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1.1.1 Introduction of the tent map

There are three equivalent ways to de�ne the tent map.

Function The tent map can be de�ned by its function:

f (x) = 1− 2|x− 1/2|

=

{
2x for 0 ≤ x ≤ 1

2

2− 2x for 1
2
≤ x ≤ 1

Graph The graph of the tent map also explains its name:

Stretch and fold A graphical instruction to obtain f (x) for arbitrary x. First, the
interval [0, 1] is stretched homogeneously by a factor of 2. The [1, 2] part of the new
interval is then mapped back to [0, 1]:

We now want to �nd periodic orbits of the tent map. To this end, recall the de�nition of
a periodic orbit: An orbit has period p if x0 = xp = fp (x0), i.e. we return to the initial
point after p applications of the map. Hence, a period-1 orbit is simply a �xed point of
the map f . In general, a point lying on a period-n orbit is a �xed point of fn (the n-fold
application of f). It is therefore a good idea to take a look at the graph of several iterates
of the map, see Fig. 3.

We see that the graph of the n−fold application of the tent map consists of 2n−1 tents
each of width 2−n+1. The minima (maxima) lie exactly at even (odd) multiples of 2−n.
This observations lead to the following

side remark: fn will map any multiple of 2−n to either 0 or 1
⇒ fn+1 (k · 2−n) = 0
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Figure 3: 2− and 3−fold application of the tent map. The number of tents doubles at
each step. Each tent is intersected twice by the identity line leading to 2n �xed points for
the n−fold application of the map.

⇒This causes a problem for digital computers since they can only work with binary
numbers (and not with symbolic expressions like fractions). Applying the tent map
several times to any initial value will eventually lead to constant 0. Without this
issue the tent map would be a good and simple random number generator. Slight
changes to the tent map can correct the problem.

Coming back to the original problem of �nding periodic orbits of the tent map, one can
make the following observation and draw the corresponding conclusions:

� fn has 2n �xed points (two for each of the 2n−1 tents; including x = 0).

� There are 2n points that lie on a period-n orbit.

� Only countably many points lie on a periodic orbit.

� The set of points with non periodic orbit is open and dense (i.e. it is much �larger�
than the set of points with periodic orbit, similar to the relation between irrational
and rational numbers).

The last conclusion means that if we draw a (true) random number in [0, 1] as initial
condition, we end up on a non periodic orbit. However, this does not necessarily imply
chaotic behavior. Points could also lie in the basin of attraction of a periodic orbit (as we
have seen for the logistic map for small values of r in Fig. 2):

x0, x1, x2, x3, x4, x5 = x3, x6 = x4, x7 = x3, ...

To get a proper understanding of the non periodic orbits we switch to an even simpler but
strongly related system, the Bernoulli shift.

1.1.2 Bernoulli shift and binary numbers

As for the tent map there are several representations of the Bernoulli shift. The plain
de�nition reads:

f (x) = (2x)mod1, x ∈ [0, 1]
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A value x is �rst multiplied by two, then everything in front of the decimal point is
dropped, i.e. set to zero. For x ∈ [0, 1/2] the Bernoulli shift is the same as the tent map
(f (x) = 2x). For x ∈ [1/2, 1] one simply gets a shifted copy of this line, which leads to the
following graph:

As for the tent map, the number of line segments doubles at each iteration of the map.
Also, each of those lines will be intersected once by the identity line, leading to the
same number of �xed points (2n) for the nth iteration. This behaviour suggests that
results for the Bernoulli shift, concerning the behaviour of the non periodic orbits, should
qualitatively also be true for the tent map.

To get another, maybe less straightforward, representation one can map the interval [0, 1]
to the unit circle in the complex plane: c (x) = ei2πx. Due to the 2π−periodicity of the
imaginary exponential function, the modulo operation of the Bernoulli shift is already
naturally included. One then �nds the property:

c (f (x)) = c ((2x)mod1) = ei2π[(2x)mod1] = ei4πx = c (x)2

We will not pay more attention to this representation, but go on to the very useful rep-
resentation via binary numbers which will prove helpful to understand the properties of
the non periodic orbits. For a better understanding we shall �rst make a recap of number
representation in the decimal and binary system.

Recap: Decimal and binary number representation

First, consider x ∈ N. The general decimal representation reads:

x =

blog10(x)c∑
k=0

dk10k, e.g. 17 = 1 · 101 + 7 · 100

The binary representation is completely analog:

x =

blog2(x)c∑
k=0

bk2
k, e.g. 17 = 24 + 20 = 10001
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For decimals, i.e. x ∈ [0, 1), it is formally the same, we just need negative exponents:

x =
∞∑
k=1

d−k10−k

=
∞∑
k=1

b−k2
−k

The sums go to in�nity since the termination of the sum is not guaranteed. Here are some
facts about the binary expansion of decimals:

� With n binary digits one can exactly represent all multiples of 2−n.

� As n→∞ this set becomes dense in the interval [0, 1].
⇒ every x ∈ [0, 1] can be arbitrary well approximated
⇒ get all numbers as n→∞

� The binary expansion of x terminates i� ∃n s.t. 2n · x is an integer.

� The binary expansion of x eventually becomes periodic i� x ∈ Q (termination is a
special case of periodicity as it can be considered an in�nite repetition of zeros)

� The binary expansion never becomes periodic i� x is irrational

We can �nally come back to the Bernoulli shift.

Binary representation of the Bernoulli shift

Recall the action of the map f (x) = (2x) mod 1: First, there is the multiplication by
two. In the binary representation this means to shift the whole binary expansion one to
the left. Second, everything in front of the decimal point is set to zero:

x = 0.b−1b−2b−3...

→ 2x = b−1.b−2b−3b−4...

→ f (x) = 0.b−2b−3b−4...

If we want x to be on a period-n orbit x must have a period-n binary expansion, e.g. for
n = 2: x = 0.b−1b−2b−1b−2.... Hence:

� There are 2n− 1 numbers in [0, 1) that lie on an orbit of period n (we identify 0 ∼= 1
here, without this identi�cation there would be 2n numbers).

� x lies on an orbit that will eventually become periodic i� x ∈ Q (i.e. if the (binary)
expansion terminates or becomes periodic).
→ these are only countably many numbers
→ �most� x generate no such orbit at all.
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There is one other behaviour of orbits that we did not investigate yet. Even if we do not
start on a periodic orbit and the orbit does not eventually become periodic, we might still
get closer and closer to a periodic orbit, or in other words, get attracted by it. To state the
question in a di�erent way: How stable are periodic orbits (subject to small perturbations)?
Is the perturbed orbit driven back to the periodic orbit or does the disturbance grow more
and more? First, we shall give a graphical example for the Bernoulli shift, then, in the next
section, this question will be treated in a general way with application to the Bernoulli
shift, tent map and �nally also the logistic map.

The period-2 orbit of the Bernoulli shift consist of the two points x0 = 1/3 and x1 = 2/3.
If we start with x0 and introduce a small perturbation x′0 = 1/3 + 10−8 then it is plausible
that the binary expansions of x0 and x′0 are the same at the �rst few positions after the
decimal point, but eventually start to di�er unpredictably. So we expect the orbit of x′0 to
stay very close to the orbit of x0 for the �rst few iterations but then to become completely
independent of it. This behaviour can indeed be observed in the following two plots.

The �rst plot shows the orbits of x0 = 1/3 (blue dots) and x′0 = 1/3 + 10−8 (red dots).
The second plot shows their di�erence. This strong (exponential) sensitivity to the initial
condition is one characterization of chaos.

1.1.3 Stability of orbits, bifurcations, Lyapunov exponents

Let f be a di�erentiable map at x0 and its orbit x0, x1, x2, .... Assume further that we
have a small perturbation t of the initial condition x0. Then the �rst order perturbation
after applying the map once is given by:

f (x0 + t) = f (x0) + f ′ (x0) t+O
(
t2
)

If we apply the map a second time, we �nd

f (f (x0 + t)) = f (f (x0)) + f ′ (f (x0))︸ ︷︷ ︸
f ′(x1)

f ′ (x0) t+O
(
t2
)

by using the chain rule and f (x0) = x1. Continuing this procedure, we �nd for the
perturbation after k iterations:

fk (x0 + t) = fk (x0) + f ′ (xk−1) f ′ (xk−2) ...f ′ (x0) t+O
(
t2
)

In the particular case that x0 lies on a period-n orbit (i.e. fn (x0) = x0 one gets:

fn (x0 + t) = x0 +
n−1∏
i=0

f ′ (xi) t+O
(
t2
)
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The expression ∂tf
n (x0 + t) =

∏n−1
i=0 f

′ (xi) is simply the product of the derivatives at
all values xi on the periodic orbit. It is therefore independent of the starting point, i.e.
instead of x0 we could also start at any other xi (on the orbit). The expression can thus
be considered a property of the orbit rather than of the particular initial condition. The
expression is also important enough to get its own de�nition:

µn :=
n−1∏
i=0

f ′ (xi)

If we now apply the map not only n times but k · n times, i.e. if we go around the total
orbit k times, we get exactly in the same way as before:

fk·n (x0 + t) = x0 + µknt+O
(
t2
)

where we used once again the properties of the periodic orbit, namely fk·n (x0) = x0 and
that we gather one factor µn for each of the k turns around the orbit. We can now make
the following statement:

If |µn|

{
> 1 → perturbation is ampli�ed exponentially → orbit is unstable

< 1 → perturbation is damped exponentially → orbit is stable

One can also rewrite the above expression as

fk·n (x0 + t) = x0 + e(lnµn)·kt+O
(
t2
)

where lnµn is called the Lyapunov exponent of fn. We can �nally answer questions about
the stability of orbits of the Bernoulli shift, the tent map and the logistic map.

Bernoulli shift f (x) = (2x)mod1 → µn = 2n > 1 for all orbits of period n (since the
derivative is 2 for any of the n points on the orbit) → orbits are not stable!

Tent map f (x) = 1− 2|x− 1/2| → |µn| = 2n > 1 (the derivative is either 2 or −2) → all
orbits are unstable. Such maps are called hyperbolic.
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Logistic map f (x) = rx (1− x). For the logistic map matters are more involved. First,
we have the free parameter r on which the behaviour will depend. Second, to
calculate µn we have to explicitly �nd the periodic orbit since the derivative is
not just constant as for the previous two maps. We shall do this for the period-1
orbit (i.e. the �xed point of f). For the period-2 orbit we shall make a graphical
investigation of the slopes at the �xed points of f 2 to determine the stability.

Period-1 orbit The �xed point equation for f is rx (1− x) = x with the two
solutions x?′ = 0 and x? = 1 − 1/r. The derivative of the logistic map is
f ′ (x) = r (1− 2x). Hence,

� for x?′ = 0: µ1 = f ′ (0) = r → only stable for |r| < 1. In the interesting regime
r ∈ (1, 4] this �xed point is unstable.

� for x? = 1− 1
r
: µ1 = f ′ (x?) = 2− r. For r ∈ (1, 4] we �nd:

x? = 1− 1

r
is

{
stable for r ∈ (1, 3)

unstable for r > 3

Period-2 orbit Look at f 2 for r & 3. For the known �xed point x? we �nd
(f 2)

′
(x?) = f ′ (f (x?)) · f ′ (x?) = f ′ (x?)

2 = (2− r)2. As seen before for only
one iteration of f , this �xed point becomes unstable for r > 3. Taking a look
at the graph of f 2 we see that two new �xed points arise.

� At r = 3 the slope of f 2 at x? becomes parallel to the identity line: (f 2)
′
(x?) =

1.

� For r & 3 , since the graph of f 2 intersects the identity line at x? from below, it
has necessarily a slope larger than one → x? becomes unstable (as known from
the previous calculation).

� At the same time two new �xed points appear, x0 and x1, one to the left, one
to the right of x?.

� At r = 3 all three points coincide: x? = x0 = x1. Therefore (f 2)
′
(x0) =

(f 2)
′
(x1) = 1

� As r increases the points separate and the slopes at x0 and x1 decrease.
→ two stable �xed points of f 2

→ stable period-2 orbit of f
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� When r is increased further the slopes at x0 and x1 become negative (as can
already be seen in the plot for r = 3.35) and �nally also smaller than −1.
At this value of r the two points become unstable and a stable period-4 orbit
emerges. This procedure goes on and on.

The observed behaviour is a fairly general mechanism for turning a stable period-1 orbit
into an unstable period-1 and a stable period-2 orbit (or in general period-2k into period-
2k+1). This is also called a bifurcation, or to be more precise a period doubling bifurcation.
A picture of a single bifurcation was already shown in section 0 and will reappear in the
next subsection. The following plot shows a large segment of the total period doubling
cascade of the logistic map. Only the stable orbits are shown.

Bifurcation: general classes

In addition to the period doubling bifurcation, there are two other frequently appearing
types of bifurcations. Table 1 gives a quick overview over the three types. All three have
in common that there is some scaling parameter that is adjusted over a critical value at
which the bifurcation occurs. The period doubling bifurcation was investigated in detail in
the previous section. The inverse period doubling bifurcation looks similar but the roles of
stable and unstable orbits are reversed, i.e. an unstable orbit turns into a stable orbit and
an unstable orbit with doubled period. For the tangent bifurcation no �xed point exists
before the bifurcation. As the scaling parameter is increased two �xed points emerge, one
stable, one unstable.

Type bifurcation scheme
graph before
bifurcation

graph after bifurcation

period
doubling

f ′ (x?) < 1
f ′ (x?) > 1
|f ′ (x0,1) | < 1
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tangent

no �xed point f ′ (x0) > 1
|f ′ (x1) | < 1

inverse
period
doubling

f ′ (x?) > 1 |f ′ (x?) | < 1
f ′ (x0,1) > 1

Table 1: Overview over three frequent types of bifurcations. The bifurcation schemes
(second column) assume that the scaling parameter is increased from left to right. A
more detailed plot of the period doubling bifurcation can be found in Fig. 2d. (Dotted)
solid lines represent (un)stable orbits. The bifurcations can also occur in the backward
direction. The graphs in column two can then simply be read from right to left. Columns
three and four show the interesting section of the graph for parameter values just before and
just after the bifurcation occurred, and also tell which of the �xed points are (un)stable.
Precise details of the map are not important. Only the rather general qualitative behaviour
depicted in the graphs is relevant.

1.1.4 Invariant measure

Note: This motivational paragraph does not occur in my written notes, so I am writing
this freely out of my mind.
The motivation to this section is roughly the following: Why does the physical theory of
thermodynamics work? That is, why does an unpredictable (be it by lack of computational
power or fundamental physical limits encountered in quantum mechanics) behaviour on
a microscopic scale lead to predictable behaviour on a macroscopic level. For example:
Why can we measure temperature and get a precise and reliable result even though the
microscopic dynamics of the single particles seem to be chaotic? Well, the answer is
roughly the following: We measure over a relatively (on a microscopic scale) large period
of time and average over all microscopic states that occur during this time. This will
always lead approximately to the same result. To connect this average to our dynamical
systems: Each time step corresponds to one iteration of the dynamical map. That is, in
our case the time average (of some function) corresponds to the average of the function
evaluated at all points on the orbit. Unfortunately we do not explicitly come back to this
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motivation in the remaining section. It was primary meant to give a smooth start.

Now, let f be a dynamical map and g a function. Then we are interested in the limit:

lim
k→∞

1

k

k−1∑
i=0

g (xi) with xi+1 = f (xi)

To analyze this limit use the notion of measure. For given f , x0, k ∈ N and A ⊂ dom (f)
de�ne the measure:

� µ
(k)
x0 (A) = 1

k
(# of points x0, x1, .., xk−1 ∈ A)

� µx0 (A) = limk→∞ µ
(k)
x0 (A)

In the cases considered in the previous sections the set A could be any subset of the interval
[0, 1].

Two properties of such measures:

1) µf(x0) (A) = µx0 (A)

This statement says that it does not matter at which point of the orbit we start. This can
be seen in the following way: As long as we average over a �nite orbit, the orbit starting
at x0 and the orbit starting at f (x0) will only di�er on the endpoints. Their contribution
to the average becomes smaller and smaller as we increase the length of the orbit. This
can be formalized in the following proof:

|µ(k)
f(x0) (A)− µ(k)

x0
(A) | ≤ 2

k
−→
k→∞

0 �

Since it does not matter if we move our initial point one step forward (x0 → f (x0)) or
the set A one step backward (A→ f−1 (A), where f−1 (A) is the set of all points that are
mapped inside A; this set inverse always exists), the above statement is equivalent to:

µx0 (A) = µx0

(
f−1 (A)

) (
= µf(x0) (A)

)
This gives rise to the de�nition of an invariant measure.

De�nition Let f be a map and µ a measure. Then µ is invariant under f if ∀A : µ (A) =
µ (f−1 (A)).

This means:

� The measures µx are invariant measures with respect to f

� Dynamical averages are described by integrals with respect to invariant measures:

1

k

k−1∑
i=0

g (xi) =

ˆ
g dµ(k)

x0
(Lebesgue integral)
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2) If x0 is �totally aperiodic� (i.e. the orbit never repeats itself) then it is plausible that
µx is described by a density.

ρ (y) := lim
ε→0

1

ε
µx

([
y − ε

2
, y +

ε

2

])
s.t. µx (A) =

ˆ
A

ρ (y) dy

Remark: �totally aperiodic� is required. This requirement tells us roughly that the orbit
�smoothly� �lls some area, and is not concentrated at a few points. Then the measure is
in some sense smooth as well. What goes wrong without the �total aperiodicity� can be
seen by an example: Assume x0 is a �xed point, then

lim
k→∞

1

k

k−1∑
i=0

g (xi) = g (x0)

i.e. we would require a density ρ (y) s.t:

ˆ
g (y) ρ (y) dy = g (x0)

This means ρ (y) = δx0 (y) i.e. the density would be a �delta distribution� which is not a
density!

Example: invariant measure of Bernoulli shift
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Claim: Lebesgue measure is invariant under the Bernoulli shift. (Note: If the set A is an
interval, then its Lebesgue measure is just its typical length.)

Example: A = [0, 1/4], µL (A) = 1/4. To calculate µL (f−1 (A)) we have to know the
preimages of the interval [0, 1/4]. From the graph one can read o� the intervals [0, 1/8] and
[1/2, 1/2 + 1/8]. One can then calculate:

µL
(
f−1 (A)

)
= µL ([0, 1/8] ∪ [1/2, 1/2 + 1/8])

= 2 · 1/8

= 1/4

= µL (A)

To state the important steps of the calculation in words:

� �Every set has two preimages of half the size each.�

� � # preimages

stretching factor
= 2

2
= 1�

In fact, this concept can be generalized and formalized:

Frobenius-Perron-Theorem ρ is an invariant density with respect to f i�

ρ (y) =
∑

z∈f−1({y})

1

|f ′ (z) |
ρ (z) ∀y

The sum goes over all preimages z of y. The absolute value of the derivative (|f ′ (z) |) is
the stretching factor. Let's apply this to the tent map (which is completely analog to the
Bernoulli shift).

� Each point has two preimages. The slope is always |f ′ (z) | = 2. For the constant
density ρ (x) = 1 we see immediately: 1 = 2 · 1

2
· 1 = 1

√
.

� Not shown but true: this is the unique invariant measure.

� So: If µx generates a measure with a density then that density has to be the constant
one.

One can make the following connection to the logistic map (see also exercise sheet 5):

� The logistic map at r = 4 is the same as the tent map, up to a change of coordinates:

flog,4 = h−1ftenth with h (x) =
2

π
arcsin

√
x

� The proof is not di�cult, but we have only done some computer simulations.

� One can understand chaotic behaviour of the logistic map at r = 4 (section 0, Fig.
2c) in a basic �number theoretic way� (as we have done for the Bernoulli shift with
the binary number representation; recall that the Bernoulli shift is very similar to
the tent map).
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� In particular, one can transform the invariant density from the constant one of the
tent map to the invariant density of the logistic map at r = 4:

ρflog,4 (x) = ρftent (h (x))︸ ︷︷ ︸
=1

|dh
dx
| = 1

π
√
x (1− x)

1.1.5 Feigenbaum universality

The recommended reference for this section is Feigenbaum's original paper: Quantitative
Universality for a Class of Nonlinear Transformations.

One phenomenon that we observed for the logistic map is a cascade of period doubling
bifurcations when increasing the scaling parameter r (see section 1.1.3). In this section we
shall show that this phenomenon also occurs for a rather general class of maps and that
the di�erent bifurcation cascades even share quantitative features.

We consider functions f of the form:

� f : [0, 1]→ [0, 1]

� f has only one extremal point, a
maximum at, say, x̄.

� f is parametrized by a scaling parameter:
fr (x) = rf1 (x)

Two examples of such maps are the logistic map and an appropriately scaled sine function.
But note that the function does not have to be symmetric, in particular x̄ does not have
to be 1/2.

De�nition An orbit is superstable if its Lyapunov exponent is −∞ i.e. µ =
∏

i f
′ (xi) = 0.

Example Assume that the identity line intersects the graph of f exactly at the maximum
x̄. Then f ′ (x̄) = 0 and the �xed point is superstable.
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In general an orbit x0, x1, x2,...xn−1 is superstable i� ∃i s.t. xi = x̄, because then∏
i f
′ (xi) = 0.

Statement:

1. Every f as above goes through a period doubling cascade.

2. For every n there is a parameter rn where the 2n−periodic orbit becomes superstable.

3. Let dn be the gap between x̄ and the closest point on the orbit. Then dn
dn+1
→ α =

2.50..., the second Feigenbaum constant.

To explain this universal behaviour, we revisit the period doubling mechanism in terms of
these general functions f .

Insight 1

The behaviour of f 2 around any extremal point depends only on f 's behaviour around its
maximum (and on a �nite set of slopes f ′ (x)).
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As an example, consider the maximum x1 of f 2. We have f (x1) = x̄ (because only then
f 2 (x1) = f (x̄) is maximal). Hence, a small interval around x1 is mapped under f to a
small interval around x̄, stretched by a factor given by the slope |f ′ (x1) |. The behaviour
of x1 under f 2 is therefore strongly connected to the behaviour of x̄ under f . This can
be made more precise by Taylor expanding the inner application of f in the expression
f 2 (x1) to �rst order:

f (x1 + δ) ≈ x̄+ c · δ where c = f ′ (x1)

→ f (f (x1 + δ)) ≈ f (x̄+ c · δ)

The factor c stretches the x−axis.

For x0 it works completely analogous. For the minimum of f 2 at x̄ one should Taylor
expand the outer application of f (the �rst order approximation of the inner f would just
be constant since f is maximal at x̄):

f (f (x̄+ δ)) ≈ f 2 (x̄) + c [f (x̄+ δ)− f (x̄)] where c = f ′ (f (x̄))

Now c stretches the y−axis and the terms f 2 (x̄) and cf (x̄) also induce a shift along the
y−axis.

So we can say in general: Around its extremal values, f 2 is approximately obtained from
f by a combination of �shifts and rescalings�.

⇒ The same should also be true for f 4 (just substitute f → f 2) and hence for f 2n ∀n.

Insight 2

The mechanism for forming period doublings and superstable orbits depends only on the
behaviour of f around its maximum x̄. Consider the graph of f 2 for r = r2 (i.e. when
the period-2 orbit becomes superstable; for the logistic map r2 = 1 +

√
5). First, realize

that x̄ has to be part of the orbit in order to make it superstable. The other point on the
superstable period-2 orbit is x1.
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Thus, as we see, x̄ and x1 are �xed points of f 2 for r = r2. Therefore the black rectangle
is indeed a square with side length d1 = x1 − x̄. Also note that the slope of f 2 at x̄ and
x1 is zero since they are both extrema of f 2.

In general, consider r = rn i.e. where the orbit of period 2n becomes superstable. Then
f 2n around x̄ should look like a S-shape of length dn in both directions.

This means: We expect f 2n around x̄ to look roughly the same for any n on an appropriate
scale. It is important to note that the scaling factor is the same in x− and y−direction.
Now combine Insight 1 and 2:

From insight 1 we get the rescaling behaviour:

f 2n (x̄+ δ) ≈ c2f
2n−1

(x̄+ c1δ)

That is, doubling the numbers of iterations we get a scaling factor of c1 along the x−axis
and a scaling factor c2 along the y−axis. From insight 2 we know that these scaling factors
should be the same, c1 = c2 = c, and hence all together:

f 2n (x̄+ δ) ≈ cf 2n−1

(x̄+ cδ)
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Now one might expect that f 2n around x̄ converges to a function that is invariant under
simultaneous rescaling of the argument and the range (the same way that the measures

µ
(n)
x tended to an invariant measure). This invariant function should be a solution of the
Feigenbaum Cvitanovic equation:

αg ◦ g
(
δ

α

)
= g (δ)

Note that we got rid of the x̄ in the argument due to a reparametrization. Even though
this equation is very complicated (due to its nonlinearity), there is the following

Result: There is a unique solution (for g and α). For g one can calculate an expansion
of the form:

g (x) = 1− 1.52763...x2 + 0.104815...x4 + 0.0267057...x6 + ...

For the scaling constant α (scaling between box sizes in the above �gures) one �nds:

α = 2.50290...

Note: The derivation of the Feigenbaum Cvitanovic equation was only heuristic and rather
hand waving, but the results are precise!

Also note that α is called the second Feigenbaum constant. The �rst Feigenbaum con-
stant appears in a similar universal behaviour for the distances between neighbouring
bifurcations.

δk =
rk−1 − rk−2

rk − rk−1

→ δ = 4.66920...
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1.1.6 Fractal dimension

Observation:

Some structures arising in simple-to-specify dynamical systems seem to have �features on
every scale�. There are �notions� of dimensionality that capture this e�ect quantitatively.

Construction:

Consider a bounded shape S ⊂ Rd. With every S and every scale ε, associate:

NS (ε) = # of ε-cubes required to cover S

⇒ logNS (ε) is the entropy number of S at scale ε.

Note: We typically use the base-2-logarithm whose unit is called bit. However, using
another base simply corresponds to a change of units (i.e. a scaling factor).

Examples in R2:

a) n isolated points, mutual distance > ε:

logNS (ε) = log n

b) Line of length L (parallel to axis):

logNS (ε) = log
L

ε

= log
1

ε
+ logL
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c) Square of side length L:

logNS (ε) = log

[(
L

ε

)2
]

= 2 log
1

ε
+ 2 logL

The slope in front of the log 1
ε
term seems to match our intuition of dimension. General

statement: If S is a D-dimensional cube of side length L, contained in Rd, d ≥ D, then:

logNS (ε) = log

[(
L

ε

)D]
= D log

1

ε
+D logL

Interpretation of entropy number:

logNS (ε) = "# of bits one has to use in order to specify a point on S up to an error of
ε�. (In general logN is the number of bits needed to encode N numbers. For example, if
N = 100 one needs log2 100 ≈ 6.64→ 7 bits (in the binary system) or log10 100 = 2 digits
(in the decimal system).

De�nition Box counting dimension:

D0 (S) = lim
ε→0

logNS (ε)

log 1
ε

From the previous examples it follows that:

D0 (D-dimensional cube of side length L) = lim
ε→0

D log 1
ε

+D logL

log 1
ε

= D

This is the minimal requirement for a de�nition of dimension. We have to obtain the
correct value for objects that we already associate a dimension with. The box counting
dimension is one way (of many) to formalize and generalize our intuitive notion of dimen-
sion. We shall now calculate the box counting dimension for more complicated examples
that show structure on arbitrary �ne scales.

Example 1 S = Koch curve ⊂ R2:

The Koch curve is constructed in an iterative way. We start with one straight line (from
0 to 1). In the �rst step, we replace the middle third interval by a �tent� i.e. an upward
directed equilateral triangle without its base. The �gure now consists of four lines each of
length 1/3. In each following step we apply the same procedure to each line of the current
�gure.
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In each iteration each line of length ln becomes four lines each of length ln/3. The length
of the total curve does therefore increase by a factor of 4/3 at each iteration. So for the
length of the curve we �nd:

1,
4

3
,

(
4

3

)2

, ..., lim
n→∞

(
4

3

)n
=∞

Note: If we terminate the procedure after a �nite number of iterations we would of course
get a �gure of �nite length (composed of a lot of straight lines) that has the intuitive
dimension D = 1. But we are interested in the limiting curve i.e. in the case that the
iterations never stop.

To calculate the box counting dimension we consider the sequence εk =
(

1
3

)k
for k → ∞

(strictly speaking convergence for this subsequence does not imply convergence for the
general ε→ 0, but we ignore this di�culty here). For k = 1 we need NK

(
1
3

)
= 3 boxes to

cover the whole �gure:

Essentially, these boxes cover the four lines that we had after one iteration. The left box
covers the left line, the right box the right line and the middle box the two middle lines
from the upward triangle. Since this standard shape reproduces itself four times in each
iteration the required number of boxes scales with a factor of four at each iteration:

k 1 2 ... K

NK

((
1
3

)k)
3 12 ... 3 · 4K−1
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From there it follows:

D0 (Koch) = lim
k→∞

log
[
NK

((
1
3

)k)]
log [3k]

= lim
k→∞

log
[
3 · 4k−1

]
log [3k]

= lim
k→∞

(k − 1) log 4 + log 3

k log 3

=
log 4

log 3
≈ 1.26...

The Koch curve has a fractal dimension! In some sense it is more than a line but less than
a two dimensional surface.

Example 2 Middle-third Cantor set C ⊂ R:

As the Koch curve, the Cantor set follows an iterative construction. We start with the
interval [0, 1]. In the �rst step we remove the middle third of this interval, i.e. the interval
(1/3, 2/3). We have now two intervals of length 1/3. In each following step we remove the
middle third of each interval of the current �gure.

By construction it follows that the measure (here the length of all combined intervals) is
reduced by a factor of 2/3 at each iteration:

µ (Cn) =

(
2

3

)n
−→
n→∞

0

So the measure of the Cantor set is µ (C) = 0. Intuitively this fact stands in favour of
the dimension D = 0. On the other hand, the Cantor set is uncountable (i.e. there is no
bijection to N). Sloppy speaking, this means that the Cantor set is not just a collection
of single points. This stands in favour of the dimension D = 1. Hence, with these two
indicators we cannot ascribe the Cantor set an intuitive dimension. In fact, it turns out
that the box counting dimension is between 0 and 1. As for the Koch curve, we consider

the sequence εk =
(

1
3

)k
. For k = 1 we need two boxes to cover the whole set (essentially

one box per interval of the set C1). In each iteration the number of intervals is doubled
while their length is divided by a factor of three. Hence, (for k = 2) we need four boxes
of length 1/9. In general:

k 1 2 ... K

NC

((
1
3

)k)
2 4 ... 2K
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Thus, the box counting dimension evaluates to:

D0 (C) = lim
k→∞

log
(
2k
)

log (3k)
= lim

k→∞

k log 2

k log 3
=

log 2

log 3
≈ 0.63...

As a side remark, here is a proof that the Cantor set is uncountable (proof by contradic-
tion):

First, construct a representation of the elements of the Cantor set: At each iteration one
can either choose the left or the right interval. We encode the left path with a 0 and the
right path with a 1. Each element of the Cantor set is obtained by a unique path and can
therefore be represented by a unique in�nite sequence of 0's and 1's. Now assume that we
have a correspondence N→ C:

1 001010111001...
2 011011100010...
3 110100001100...
...

...

Then one can construct an element that is not in this list in the following way: Take the
negation (0̄ = 1, 1̄ = 0) of the �rst element of the �rst list entry, the second element of
the second entry and in general the nth element of the nth entry. By construction the new
element di�ers from any other list entry at at least one position. �

Example 3 Fractal arising in a dynamical system:

Recall the Bernoulli shift:

f (x) = 2x mod 1 =

{
2x , x ≤ 1

2

2x− 1 , x > 1
2

We slightly modify this map by introducing an additional parameter that increases the
slope, and by extending the map to ±∞ (we are still mainly interested in the interval
[0, 1]):

f (x) =

{
2ηx , x ≤ 1

2

2η (x− 1) + 1 , x > 1
2

Initial values:
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� x0 < 0 diverge to −∞

� x0 > 1 diverge to +∞

But also values x0 ∈ [0, 1] that are eventually mapped to either of the two regimes will
diverge to ±∞. Then, what is the structure of the set S of points that will remain inside
the interval [0, 1] inde�nitely?

For one iteration one can see that the intervals [0, 1/2η] and [1− 1/2η, 1] are mapped to
[0, 1], while points in the middle interval [1/2η, 1− 1/2η] are mapped to values < 0 or > 1.
Similar as for the construction of the middle-third Cantor set, this procedure repeats
itself. So for two iterations we have to �nd the subsets of [0, 1/2η] and [1− 1/2η, 1] that are
mapped to [1/2η, 1− 1/2η] at the �rst iteration. For [0, 1/2η] one �nds the intervals 1

2η
[0, 1/2η]

and 1
2η

[1− 1/2η, 1]. So at each iteration the number of remaining intervals is doubled
while their length is divided by a factor of 2η. The gaps between the intervals scale as
∆ = 1− 1/η, ∆/2η, ∆/(2η)2...

To calculate the box counting dimension we consider the sequence εk =
(

1
2η

)k
and �nd:

k 1 2 ... K

NS

((
1
2η

)k)
2 4 ... 2K

D0 (S) = lim
k→∞

log
(
2k
)

log
[
(2η)k

] =
log 2

log 2η
∈ [0, 1]

For η = 1 we regain the typical Bernoulli shift where the whole interval [0, 1] is mapped
to [0, 1] and thus we �nd D0 = 1. For η →∞ the whole interval [0, 1] diverges to ±∞ and
we �nd D0 = 0. For any other η ∈ (1,∞) we �nd that the set remaining inde�nitely in
[0, 1] is a fractal of dimension log 2

log 2η
. So we actually managed to �nd a fractal arising from

a simple dynamical map.

2 Stochastic Processes

At the heart of stochastic processes stands probability theory. We shall therefore start
with a short introduction of this large subject.
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2.1 Probability theory

The abstract de�nition of a probabilistic model starts with a probability space (Ω,F , P )
build up by the three parts:

� Ω: The sample space which consists of all possible outcomes.

� F : The set of events. An event is any subset of Ω.

� P : The probability measure that assigns a probability to every event.

As an example consider a coin �ipping experiment:

� Ω = {heads, tails}

� F = {{heads, tails} , {heads} , {tails} , ∅}: The event {heads}means the coin landing
heads. The event {heads, tails} is the event that the coin lands either heads or tails,
so the event that anything happens. ∅ means that none of the possible outcomes
occurs.

� P ({heads, tails}) = 1 because the probability that anything happens has to be
one. Accordingly, the probability that we observe none of the possible outcomes is
P (∅) = 0. If the coin is fair then P ({heads}) = P ({tails}) = 1/2.

In general, the following rules apply:

1. 0 ≤ P (A) ≤ 1 ∀A ∈ F

2. P (Ω) = 1

3. For A1, A2, A3, ... (Ai ∈ F) with Aj ∩ Ak = ∅ (for j 6= k) one has P (∪∞i=1Ai) =∑∞
i=1 P (Ai). That is, probabilities of disjoint events are simply added.

2.1.1 Conditional probabilities

One is often interested in the probability of an event A given that an event B occurred.
This probability can be obtained as the probability that A and B occur divided by the
probability of B (e.g. B : it is cloudy today, A : it was sunny yesterday):

P (A|B) =
P (A ∩B)

P (B)

→ P (A ∩B) = P (A|B)P (B)

Two events are called independent if the joint probability factorizes:

P (A ∩B) = P (A)P (B)

In this case we �nd for the conditional probabilities:

P (A|B) = P (A) and P (B|A) = P (B)
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2.1.2 Random variables

In the abstract de�nition a random variable

X : Ω→ R

is a map from the sample space to the real numbers. This establishes the connection from
the abstract de�nition to the intuitive understanding of probability theory.

Example 1: The outcomes heads and tails of a coin are often mapped to 0 and 1 (but any
other numbers would be possible as well):

X (heads) = 0

X (tails) = 1

Example 2: For a six sided die the outcome 'side with n eyes' can be mapped to the
number n. In this case the step from the abstract de�nition to the assigned number is
very intuitive (in a careless sense they coincide).

2.1.3 Cumulative distribution function, probability distribution and proba-
bility density

One is often interested in the probability that the outcome of the random variable is
smaller than a certain value:

FX (x) = P (X ≤ x) = P ({ω ∈ Ω : X (ω) ≤ x})

FX (x) is called the cumulative distribution function of the random variable X.

For discrete random variables one can also assign a probability to a single outcome value:

probability distribution: PX (x) = P (X = x)

For continuous random variables the probability that the variable takes on one speci�c
value x is zero. But one can often de�ne a:

probability density fX (x) s.t. FX (x) =

ˆ x

−∞
fX (t) dt

If the distribution is �well behaved�, then:

fX (x) =
dFX (x)

dx

Note: The probability density does not necessarily exist. In a sense, the distribution has
to be �smooth� enough. This is the case for absolutely continuous random variables which
always have a density. The cumulative distribution function, on the other hand, always
exists.

As an example consider the Gaussian distribution with mean µ and width σ: fX (x) =

1√
2πσ

e−
(x−µ)2

2σ2
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2.1.4 Two variable distributions

Consider two random variables X, Y : Ω → R. Completely analogous to the case of one
single variable one can de�ne the joint cumulative distribution:

FX,Y (x, y) = P (X ≤ x, Y ≤ y) = P ({ω ∈ Ω : X (ω) ≤ x} ∩ {ω′ ∈ Ω : Y (ω′) ≤ y})

Furthermore, in the discrete case, de�ne the joint probability distribution

PX,Y (x, y) = P (X = x, Y = y)

and in the continuous case the joint density

fX,Y (x, y) =
d2

dx dy
FX,Y (x, y) .

One can obtain the marginal distribution of a single variable by summing or integrating
over the other variable:

discrete: PX (x) =
∑
y

PX,Y (x, y)

continuou: fX (x) =

ˆ ∞
−∞

fX,Y (x, y) dy

Analogous to what we did in the abstract de�nition, we can de�ne conditional distribu-
tions.

In the discrete case:

PX|Y=y (x) = P (X = x|Y = y)

= P ({ω ∈ Ω : X (ω) = x} | {ω′ ∈ Ω : Y (ω) = y})

=
P ({ω ∈ Ω : X (ω) = x} ∩ {ω′ ∈ Ω : Y (ω) = y})

P ({ω′ ∈ Ω : Y (ω) = y})

=
PX,Y (x, y)

PY (y)

→ PX,Y (x, y) = P (X = x|Y = y)P (Y = y)

= P (Y = y|X = x)P (X = x)

In the continuous case:

fX|Y=y (x) =
fX,Y (x, y)

fY (y)

→ fX,Y (x, y) = fX|Y=y (x) fY (y)

= fY |X=x (y) fX (x)

For independent random variables all kinds of distribution functions factorize:

cumulative distr. fct.: FX,Y (x, y)=FX (x)FY (y)

discrete case: prob. distr.: PX,Y (x, y)=PX (x)PY (y)

continuous case: density: fX,Y (x, y) =fX (x) fY (y)
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2.1.5 Expectation value

The expectation values of a random variable is de�ned as the average over all possible
outcomes weighted with the corresponding probabilities:

discrete case: E [X]=
∑
x

xP (X = x)

continuous case: E [X]=

ˆ ∞
−∞

xfX (x) dx

The expectation does not necessarily exist. As an example consider the discrete distribu-
tion P (X = n) = 1

C
1
n2 (with C = π2

6
), n = 1, 2, 3, ... One �nds:

∞∑
n=1

1

C

1

n2
=1

but E [X]=
∞∑
n=1

1

C

1

n
=∞

It is even possible that one cannot assign any value (including ±∞) at all. The following
subsection is dedicated to illustrate this strange behaviour.

Side remark: About ill de�ned expectation values

The crucial point that can cause trouble is when the expectation value has a positive and
a negative part that converge individually to ±∞ (then �E [x] = ∞−∞ =?�). We will
�rst consider the discrete case in a general way and then give a detailed example for the
continuous case.

Consider a series that is convergent but not absolutely convergent:

∞∑
n=1

an = C but
∞∑
n=1

|an| =∞

Such a series is called conditionally convergent.

Riemann's rearrangement theorem: Let
∑N

n=1 an be a conditionally convergent se-
ries, then for any r ∈ R there exists a permutation σ of the N s.t.:

lim
N→∞

N∑
n=1

aσ(n) = r

That is, one can rearrange the order of summation in order to converge to any desired
value. One can also let the series diverge to ±∞ or to not be well de�ned at all.
(Note: For an absolutely convergent series the order of summation is irrelevant.)
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For expectation values no natural order of summation exists. Hence, if the expectation
value is only conditionally convergent one obtain any (or no) value. Thus, in this case the
expectation value is not well de�ned. An example for a conditionally convergent series
is
∑∞

n=1 (−1)n 1
n
. We will not prove the above theorem but instead consider a detailed

example for the continuous case.

Consider the general integral (not necessarily an expectation value)
´∞
−∞ f (x) dx. This

expression contains two limits at once (upper integral limit to +∞ and lower limit to
−∞). If both limits exist separately

I+ :=

ˆ ∞
0

f (x) dx = U and I− :=

ˆ 0

−∞
f (x) dx = V

then we get for the total integral:

ˆ ∞
−∞

f (x) dx = I+ + I− = U + V

However, if I+ = ∞ and I− = −∞ we run into trouble. The value of the total integral
might depend on �how fast we approach +∞ compared to −∞�. To formalize this, we
�rst combine the two limits by de�ning two functions G (t) and H (t) that satisfy:

lim
t→∞

G (t) =∞ and lim
t→∞

H (t) = −∞

Then we rewrite
´∞
−∞ f (x) dx as:

lim
t→∞

ˆ G(t)

H(t)

f (x) dx

In the case that I+ = U and I− = V exist separately this expression is well de�ned:∣∣∣∣∣
ˆ G(t)

H(t)

f (x) dx− U − V

∣∣∣∣∣ =

∣∣∣∣∣
ˆ G(t)

0

f (x) dx− U +

ˆ 0

H(t)

f (x) dx− V

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ G(t)

0

f (x) dx− U

∣∣∣∣∣︸ ︷︷ ︸
→0

+

∣∣∣∣ˆ 0

H(t)

f (x) dx− V
∣∣∣∣︸ ︷︷ ︸

→0

→ 0

For the case that I+ and I− are ±∞ consider as an example the Cauchy distribution with
density fX (x) = 1

π
1

x2+1
and de�ne:

Q (t) =

ˆ G(t)

H(t)

1

π

x

x2 + 1
=

1

2π
ln

(
G (t)2 + 1

H (t)2 + 1

)

limt→∞Q (t) would be the expectation value if it existed. To show that it is not well
de�ned we consider several realizations of G (t) and H (t).



2 STOCHASTIC PROCESSES 34

� G (t) = t, H (t) = −t → Q (t) = 1
2π

ln
(
t2+1
t2+1

)
→ 1

2π
ln 1 = 0

� G (t) = teπa, H (t) = −t → Q (t) = 1
2π

ln
(
t2e2πa+1
t2+1

)
=→ 1

2π
2πa = a

We can obtain any value a ∈ R!

� G (t) = t2, H (t) = −t →Q (t)→∞

� G (t) = t, H (t) = −t2 →Q (t)→ −∞

� G (t) = t (1 + |sin t|), H (t) = −t

→ Q (t) = 1
2π

ln

(
(1+|sin t|)2+ 1

t2

1+ 1
t2

)
→ 1

π
ln (1 + |sin t|)

→ no limit exists!

As one can see, the expectation value of the Cauchy distribution is not well de�ned. Also
higher moments, like variance, are not well de�ned. Considering the graph of the Cauchy
distribution, one might wonder why this is the case.

The graph looks qualitatively similar to that of a Gaussian distribution. Intuitively one
would probably expect zero as the expectation value (as obtained for the same rate of
convergence towards both ±∞). However, compared to the Gaussian distribution, the
tails of the Cauchy distribution are much heavier such that the individual integrals in
both directions diverge.

As a �nal remark, the empirical mean value (sample mean) that would converge to the
expectation value if it existed, does not converge either. The �uctuations become larger
with increasing sample size. The law of large numbers that typically guarantees the
convergence of the sample mean to the expectation value cannot be applied here as it
requires the existence of the expectation value.

2.2 Discrete time and discrete space processes

In general, A stochastic process can be characterized by a sequence of random variables
{Xt}t∈S where S = N (R) corresponds to discrete (continuous) time processes. The values
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that Xt can take are elements of the state space. The state space can be discrete or
continuous as well. All four combinations of discrete and continuous time and state space
are possible.

discrete space continuous space
discrete time our starting point ...

continuous time ... e.g. Brownian motion

We start with discrete time and discrete space processes. Consider the sequence

X0, X1, X2, X3, ..., Xn+1

where Xi are discrete random variables. Label the possible values of Xi by ji = 1, 2, 3, ...
The probability that the process follows one particular path (i.e. a particular sequence of
values Xi = ji)

is:
P (Xn+1 = jn+1, Xn = jn, ..., X0 = j0)

One of our goals is to calculate this probability (i.e. to simplify the expression) and other
quantities arising from it (like marginal distributions). We do this for special class of
processes, so called Markov chains.

2.2.1 Markov chains

In general the value of Xn+1 can depend on all previous values Xn, Xn−1, ..., X0. We want
to consider the special case that the probability for the next step depends only on the
current step. One then speaks of a Markov chain and also calls such systems memoryless.
Formally the Markov condition reads:

P (Xn+1 = jn+1 | Xn = jn, Xn−1 = jn−1, ..., X0 = j0) = P (Xn+1 = jn+1 | Xn = jn) ∀n

A Markov chain is called homogeneous if the transition probabilities

Pjk = P (Xn+1 = j | Xn = k)

are independent of n, i.e. if they do not change from step to step.
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Example 1: Consider a person with a life that consists only of 'study', 'party' and 'sleep'.
He also does any of these activities for a whole day. The probability of tomorrow's
activity shall only depend on today's activity. For example the probability that he
sleeps tomorrow if he parties today (P (sleep|party)) should be rather large. Let us
specify all these probabilities:

P (study|study) = 0.3 P (study|party) = 0.01 P (study|sleep) = 0.4
P (party|study) = 0.4 P (party|party) = 0.09 P (party|sleep) = 0.4
P (sleep|study) = 0.3 P (sleep|party) = 0.9 P (sleep|sleep) = 0.2

It suggests itself to write these probabilities in a matrix:

P =

0.3 0.01 0.4
0.4 0.09 0.4
0.3 0.9 0.2


The elements of this matrix are the aforementioned transition probabilities. Hence,
the matrix P is called transition matrix. As the matrix is written down here it has
to be multiplied from the left to a column vector

p =

pstudypparty
psleep


which contains the current probabilities to study, party and sleep.
Instead of the matrix representation one can equivalently represent the transition
probabilities in a transition graph:

Example 2 One dimensional random walk
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with in�nite dimensional transition matrix:

. . . . . .

. . . 0 1
2

1
2

0 1
2

1
2

0 1
2

1
2

0
. . .

. . . . . .

We now want to �nd a simple expression for the probability P (Xn+1 = jn+1, Xn = jn, ..., X0 = j0)
of a speci�c path for a Markov chain.

P (Xn+1 = jn+1, Xn = jn, ..., X0 = j0)

=P (Xn+1 = jn+1 | Xn = jn, ..., X0 = j0)P (Xn = jn, ..., X0 = j0)

=P (Xn+1 = jn+1 | Xn = jn)P (Xn = jn | Xn−1 = jn−1, ..., X0 = j0)P (Xn−1 = jn−1, ..., X0 = j0)

...

=P (Xn+1 = jn+1 | Xn = jn)P (Xn = jn | Xn−1 = jn−1) ...P (X1 = j1 | X0 = j0)P (X0 = j0)

=Pjn+1,jnPjn,jn−1 ...Pj1,j0P (X0 = j0)

From line 1 to line 2 we simply used the general rule to decompose a total probability in
terms of a conditional probability and the probability of the conditioned variables. From
line 2 to line 3 we applied the same decomposition law on the second term and the Markov
condition on the �rst term. Iterating this procedure one can decompose the whole expres-
sion in terms of simple conditional probabilities of the form P (Xn = jn | Xn−1 = jn−1)
and the remaining initial probability P (X0 = j0). The conditional probabilities can be
identi�ed as elements of the transition matrix.

Now, we may further be interested in the marginal probability of Xn+1. As mentioned in
the �rst example it is convenient to write the probabilities P (Xn+1 = jn+1) into a vector

p(n+1) =


P (Xn+1 = 1)
P (Xn+1 = 2)

...
P (Xn+1 = K)


assuming that the total number of possible states is K. That is, p

(j+1)
jn+1

is the probability to
be in state jn+1 at time step j + 1. Next, recall that the marginal distribution is obtained
by summing over all other variables. We �nd:

p
(n+1)
jn+1

= P (Xn+1 = jn+1)

=
∑

jn,jn−1,..,j0

P (Xn+1 = jn+1, Xn = jn, ..., X0 = j0)

=
∑

jn,jn−1,..,j0

Pjn+1,jnPjn,jn−1 ...Pj1,j0 P (X0 = j0)︸ ︷︷ ︸
p

(0)
j0

=
[
P n+1p(0)

]
jn+1
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That is, the initial distribution p(0) propagates forward in time by multiplication with the
transition matrix P , one multiplication for each time step.

To identify the matrix multiplications in line 3 of the above calculation, recall the general
expression for the product of two matrices A and B

[AB]ij =
∑
k

AikBkj

and for the special case of the multiplication of a matrix A with a vector v:

[Av]i =
∑
k

Aikvk

In this way one can for example identify∑
j0

Pj1,j0p
(0)
j0

=
[
Pp(0)

]
j1

= p
(1)
j1

in the above calculation. Further iterations yield the �nal result

p
(n+1)
jn+1

=
[
P n+1p(0)

]
jn+1

2.2.2 Properties of the transition matrix

We consider a transition matrix Pjk = P (Xn+1 = j | Xn = k) ∀n. This matrix has to
satisfy:

� Pjk ≥ 0

�
∑

j Pjk =
∑

j P (Xn+1 = j | Xn = k) = 1

That is, elements have to be non-negative as they represent probabilities and elements in
one column have to sum to one since the probability to go anywhere (including to stay in
the current state) is one. Such a matrix is called a left stochastic matrix and it has to be
applied from the left to a column vector:

p(n+1) = Pp(n)

Note that the standard in probability theory is to use right stochastic matrices whose rows
sum to one and that are applied from the right to a row vector:

pt,(n+1) = pt,(n)P̃
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Lemma Let P,Q be N × N left stochastic matrices. Then QP is also a left stochastic
matrix. Hence, also P n is left stochastic.

Proof:

� [QP ]jk =
∑N

l=1 Qjl︸︷︷︸
≥0

Plk︸︷︷︸
≥0

≥ 0

�
∑N

j=1 [QP ]jk =
∑N

j=1

∑N
l=1QjlPlk =

N∑
l=1

(
N∑
j=1

Qjl

)
︸ ︷︷ ︸

=1

Plk

︸ ︷︷ ︸
=1

= 1

where we used that columns of Q and P sum to one.

2.2.3 Stationary and limit distributions

� Given P we say a distribution q is stationary with respect to P if

Pq = q → P nq = q

� A probability distribution π is called a limit distribution with respect to P if

lim
n→∞

P nv = π

for all initial distributions v. A limit distribution does not always exist, even if a
stationary distribution exists.

Examples:

� P =

(
0 1
1 0

)
does not have a limit distribution. Each application of P simply swaps

the two elements of a probability vector p:(
p1

p2

)
→
P

(
p2

p1

)
→
P

(
p1

p2

)
→ ...

But the distribution

(
1/2

1/2

)
is stationary.

� The block diagonal transition matrix

P =


1/2 2/3 0 0
1/2 1/3 0 0
0 0 1/4 4/5

0 0 3/4 1/5


does not have a limit distribution. Distributions of the form

(
p1 p2 0 0

)t
will

always be mapped to distributions of the same form and similar for
(
0 0 p1 p2

)t
.

One might be able to de�ne limit distributions for the corresponding subspaces. But
no global limit exists that attracts all initial distribution.



2 STOCHASTIC PROCESSES 40

While the existence of a stationary distribution does not guarantee the existence of a limit
distribution, the implication in the other direction is true:

Proposition Let P be a �nite left stochastic matrix. If P has a limit distribution π, then
π is also the unique stationary distribution.

Proof of existence:

By assumption:
π = lim

n→∞
P nv

Hence:
Pπ = P lim

n→∞
P nv = lim

n→∞
P n+1v = π

Proof of uniqueness:

Assume the existence of another stationary distribution q 6= π then by assumption Pq = q
and hence:

lim
n→∞

P nq = q

The de�nition of the limit distribution π, however, implies

lim
n→∞

P nq = π

since the limit distribution attracts all other distributions. This is a contradiction and
thus no such q can exist.

We are now interested in �nding conditions for the existence of a limit distribution. The
following theorem will be helpful:

Theorem (Perron-Frobenius)
Let Q be a K ×K left stochastic matrix with Qij > 0 ∀i, j. Then:

� 1 is a simple eigenvalue to Q (i.e. it has multiplicity 1).

� The absolute values of all other eigenvalues of Q are strictly smaller than 1.

We will not prove this theorem here but continue with a proposition concerning the ques-
tion of existence of a limit distribution.

Proposition Let Q be a K ×K left stochastic matrix with Qij > 0 ∀i, j. Then Q has a
limit distribution q with the property qi > 0 ∀i.

We prove this theorem for the special case that Q has a complete set of eigenvectors. We
can then take advantage of the eigenvalue decomposition of Q. In the more general case
one has to use a Jordan decomposition instead. Similar arguments will lead to the same
result.

Proof of existence:
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According to our additional assumption there exists an invertible matrix S s.t.

Q = S

λ1

. . .

λK

S−1

where λ1, ...λK are the eigenvalues of Q. Furthermore, according to the Perron-Frobenius
Theorem we know that one of these eigenvalues is 1 while the others have absolute value
strictly smaller than 1. Without loss of generality we choose to order them in the following
way:

λ1 = 1 > |λ2| ≥ |λ3| ≥ ... ≥ |λK |

For the limit distribution we are interested in high powers of the transition matrix Q. For
high powers one obtains:

lim
n→∞

λn1 = 1 and lim
n→∞

λnk = 0 ∀k 6= 1

We then �nd for high powers of the transition matrix:

Q̃ = lim
n→∞

Qn

= lim
n→∞

S

λ1

. . .

λK

S−1S︸ ︷︷ ︸
1

λ1

. . .

λK

S−1...S

λ1

. . .

λK

S−1

= lim
n→∞

S

λ
n
1

. . .

λnK

S−1

= S


1

0
. . .

0

S−1

Writing out this matrix multiplication element wise one gets:

Q̃jk = Sj1
[
S−1

]
1k

Furthermore we know that powers of a stochastic matrix are stochastic matrices as well.
Hence Q̃ is a stochastic matrix which means Q̃jk ≥ 0 ∀j, k and columns of Q̃ sum to 1:

1 =
K∑
j=1

Q̃jk =
∑
j

Sj1
[
S−1

]
1k

→
[
S−1

]
1k

=
1∑
j Sj1

→ Q̃jk =
Sj1∑
j Sj1

=: qj
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Realize that this expression does not depend on the column k, i.e. all columns of Q̃ are
the same:

Q̃ =

 | | |
q q · · · q
| | |


Also note that since Q̃ is a stochastic matrix we have qj ≥ 0 and

∑
j qj = 1. Thus, q is a

valid probability vector. Furthermore, q is indeed the desired limit distribution, i.e.

lim
n→∞

Qnv = Q̃v = q ∀ probability vectors v

This can be seen in the following way:[
Q̃v
]
k

=
K∑
j=1

Q̃kjvj

=
K∑
j=1

qkvj

= qk

K∑
j=1

vj︸ ︷︷ ︸
1

= qk

→ Q̃v = q

At this point, we only know qj ≥ 0 ∀j since q is a probability vector. In the next part of
the proof we shall show that indeed qj > 0.

Proof of strict positivity:

From qj ≥ 0 ∀j and
∑

j qj = 1 we can follow that there must exist one index l with ql > 0
(otherwise the sum over all qj could not be strictly larger than zero). From a previous
proposition we also know that the limit distribution q is also the stationary distribution
of Q. Hence:

Qq = q

→ qj =
∑
k

Qjkqk

= Qjl︸︷︷︸
>0

ql︸︷︷︸
>0

+
∑
k 6=l

Qjk︸︷︷︸
>0

qk︸︷︷︸
≥0

≥ Qjlql

> 0

Thus, from the strict positivity of one single element of q we can conclude the strict
positivity of all elements of q. �

One huge disadvantage of the proposition in its current form is the requirement Qjk > 0
which is generally, or even typically, not satis�ed. Consequently, we next strive for a
proposition of greater generality. We start with some remarks that will turn out to be
useful.
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� ‖v‖1 :=
∑

k|vk|: l1 − norm (also called �Manhattan norm� or �bounded variation
distance�)

� ‖A‖1 := sup
‖v‖1=1

‖Av‖1

It follows: ‖Av‖1 ≤ ‖A‖1‖v‖1

Lemma Given a K ×K matrix A, then

‖A‖1 = max
k=1,...,K

K∑
j=1

|Ajk|︸ ︷︷ ︸
sum of column k

Corollary If P is a left stochastic matrix, then ‖P‖1 = 1 (since each column is a proba-
bility vector).

Lemma Let P be a K ×K left stochastic matrix and q be a stationary distribution to
P . Then: ∥∥P n+1v − q

∥∥
1
≤ ‖P nv − q‖1

This means, at each iteration we get either closer to the stationary distribution or
stay at the same distance but never go farther away.

Proof: ∥∥P n+1v − q
∥∥

1
=

∥∥P n+1v − Pq
∥∥

1

(since Pq = q)→ = ‖P (P nv − q)‖1

(by the previous lemma)→ ≤ ‖P‖1︸ ︷︷ ︸
1

‖P nv − q‖1

= ‖P nv − q‖1

The following de�nition introduces the property that we require in our more general propo-
sition concerning the existence of a limit distribution.

De�nition Let P be a transition matrix. The corresponding Markov chain is called
regular if ∃n s.t.:

[P n]jk > 0 ∀j, k

This means, that after su�ciently many iterations any element in the transition
graph is connected with any other element.

Finally, we can state and prove the desired proposition.

Proposition Let P be a transition matrix for a �nite, regular Markov chain. Then P
has a limit distribution q s.t. qj > 0 ∀j
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The only di�erence to the previous proposition is the less restrictive condition. Instead of
requiring that each element is connected with any other element already by one application
of the transition matrix, we only require this for a su�ciently large number of iterations.

Proof:

By assumption of regularity we know that ∃n s.t. [P n]jk > 0. We de�ne Q := P n and can
use the previous proposition for Q. That is, we know ∃q s.t.

lim
m→∞

Qmv = q ∀v

→ lim
m→∞

P n·mv = q ∀v

However, we are actually interested in the limit liml→∞ P
lv = q of which limm→∞ P

n·mv
is only a subsequence. The convergence of the subsequence does not guarantee the con-
vergence of the full sequence. Fortunately, we can use the previous lemma (stating that
by application of P we never get farther away from the limit distribution) to conclude the
convergence of the full sequence. To this end, write

l = n · cn (l) + rn (l)

where cn (l) is the (integer) number of times that n �ts into l and rn (l) is the remainder
(e.g. if l = 11 and n = 2→ 11 = 2 · 5 + 1). Note, that as l→∞ also cn (l)→∞. We can
now write:

0 ≤
∥∥P lv − q

∥∥
1

=
∥∥P n·cn(l)+rn(l)v − q

∥∥
1

(by using the aforementioned lemma)→ ≤
∥∥P n·cn(l)v − q

∥∥
1

=
∥∥Qcn(l)v − q

∥∥
1

→
l→∞

0

So we found
∥∥P lv − q

∥∥
1
→
l→∞

0 and can conclude the desired convergence P lv →
l→∞

q. The

property qj > 0 ∀j is also inherited from the previous proposition. �

2.2.4 Time averages

Similar to the motivational part of section 1.1.4 we want to consider the loose statement
�time average is equal to ensemble average�. One way to use this statement in practice
is to approximate an inaccessible ensemble average with an average over a �nite time.
We will make statements concerning the (time) average for independent and identically
distributed (i.i.d.) variables as well was for sequences generated by a Markov chain.

First, consider the i.i.d. variables X0, X1, X2, X3, .... I.i.d. means that all variables are
independently drawn from the same distribution. If we consider this as a time sequence,
this case is even �more memoryless� than a Markov chain. While in a Markov chain,
the current state depends only on the previous state, even this dependence is lost for i.i.d.
variables, i.e. a new state is drawn completely at random without considering any previous
state. We also assume that the expectation of X exists: E [X] < ∞ (more precisely the
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expectation of any Xi which is the same for all i). Then the time average, or in other
words simply the mean of X0, X1, X2, X3, ... converges to E [X]:

lim
K→∞

1

K

K∑
k=0

Xk = E [X] a.s.

The a.s. stands for almost surely, stating that there are sequences X0, X1, X2, X3, ... for
which the mean does not converge to E [X], but these sequences are so unlikely that if we
would pick a sequence at random the probability to pick one of those sequences would be
zero. Formally, this can be stated as (recall the abstract de�nition of a random variable:
X : Ω→ R)

P

({
ω ∈ Ω : lim

K→∞

1

K

K∑
k=0

Xk (ω) = E [X]

})
= 1

This statement is also known as the strong law of large numbers.

Example:

Consider a coin �ipping experiment. To generate the sequence X0, X1, X2, X3, ... we �ip
the coin again and again (in�nitely often). We assume that the probabilities for 'heads'
and 'tails' do not change with time and that all �ips are independent of each other. This
means, that the variables are indeed i.i.d. Let us say that 'heads' corresponds to 0 and
'tails' to 1 and that the coin is fair:

X (heads) = 0, X (tails) = 1

and P (heads) =
1

2
, P (tails) =

1

2

→ E [X] =
1

2

For a sequence like (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, ...) it is reasonable that the mean 1
K

∑K
k=1 Xk

converges to E [X] = 1
2
. But of course we could also have the sequence (1, 1, 1, 1, 1, 1, 1, 1, ...)

for which the mean is 1. However, the latter sequences are very unlikely to occur (proba-
bility zero). The following picture serves as an illustration.

For Markov chains, a similar law exists.



2 STOCHASTIC PROCESSES 46

Proposition Let P be an N ×N transition matrix of a �nite, regular Markov chain with
limit distribution q. Then:

lim
K→∞

1

K

K−1∑
k=0

Xk =
N∑
n=1

xnqn a.s.

So the time average over an in�nite chain is equal to the average over the limit
distribution (the latter meaning the average of the values xn corresponding to state
n weighted with the probability qn to be in that state in the limit distribution). The
statement can be generalized to functions f of the variables Xk:

lim
K→∞

1

K

K−1∑
k=0

f (Xk) =
N∑
n=1

f (xn) qn a.s.

Example 1:

Let f be an indicator function

I(m) (x) =

{
1 , x = m

0 , x 6= m

(you can also think of the Kronecker-Delta). Then:

lim
K→∞

1

K

K−1∑
k=0

I(m) (Xk) =
N∑
n=1

I(m) (xn)︸ ︷︷ ︸
δnm

qn = qm

With the indicator function we simply count the number of times we visit the state labeled
by m. With the prefactor 1/K we get the relative frequency of occurrence of state m, which
is given by the probability of the state in the limit distribution.

Example 2:

Consider again the person with the simple lifestyle that consists only of the activities
'study', 'party' and 'sleep'. One could be interested in the average money that this person
spends per day. The function f then associates the spent money, say in ¿, on a single
day with this day's activity, e.g. f (study) = 10, f (party) = 50 and f (sleep) = 0. For the
time average one �nds:

lim
K→∞

1

K

K−1∑
k=0

f (Xk) = qstudy · 10 + qparty · 50 + qsleep · 0

Note, that the formula only makes a statement for the long (in�nite) time limit. For �nite
times, the time average will approach the limit value as time goes on but we made no
statement about the magnitude of �uctuations, i.e. the speed of convergence.

Also consider the analogy to invariant measures in deterministic (chaotic) processes. The
measure µ (A) counted the relative number of visits of the orbit x0, x1, x2, ... in an arbitrary
set A. For the average of a function f (xk) we found:

lim
K→∞

1

K

K−1∑
k=0

f (xk) =

ˆ 1

0

f (x) ρ (x) dx a.e.
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if the invariant measure has a density ρ. In this analogy, the invariant density plays the
role of the limit (or stationary) distribution in stochastic processes. The a.e. stands for
almost everywhere which has essentially the same meaning as a.s (almost surely) but for
measures instead of probabilities.

Example:

For the logistic map f (x) = rx (1− x) at r = 4 we found the invariant density

ρ (x) =
1

π
√
x (1− x)

2.2.5 Recurrence time

Consider a Markov chain with sequence (Xk)k=0,1,2,.... Assuming that we start in X0 = j,
what is the time required to revisit state j? This time is called the recurrence time (of
state j):

Tj = min
k
{k ≥ 1, Xk = j}

Since in stochastic processes transitions are governed by probabilities the recurrence time
will in general be di�erent for di�erent realizations of the chain. One is therefore often
interested in the mean recurrence time:

τj = E [Tj | X0 = j]

If P (Tj <∞ | X0 = j) = 1 (meaning that we will eventually return to state j), then the
state is called recurrent. If all states are recurrent, then the whole chain is called recurrent.

Lemma If a �nite Markov chain is regular, then:

lim
K→∞

1

K

K−1∑
k=0

I(m) (Xk) = qm > 0

and thus the chain is recurrent.

The implication of the lemma can be seen in the following way: If the chain would not be
recurrent, then the number of occurrences

∑K−1
k=0 I

(m) (Xk) of state m would be either 0
or 1 (depending on the initial state X0). But this would lead to qm = 0 which contradicts
the assumption of regularity. One can even �nd a very simple expression for the mean
recurrence time τm:

Proposition Consider a �nite and regular Markov chain with N × N transition matrix
P and limit distribution q. Then:

τj =
1

qj
∀j = 1, ..., N

Proof:
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� First, observe that by de�nition of the mean recurrence time, we can write:

τj = E [τj | X0 = j]

=
∞∑
k=1

kP (Tj = k | X0 = j)

=
∞∑
n=1

∞∑
k=n

P (Tj = k | X0 = j)

=
∞∑
n=1

P (Tj ≥ n | X0 = j)

� To see the step from line 2 to line 3, introduce the shorthand notation bk :=
P (Tj = k | X0 = j) and write:

∞∑
k=1

kbk = b1 + 2b2 + 3b3 + ...

= b1 + b2 + b3 + ...

(
←

∞∑
k=1

bk

)

+b2 + b3 + ...

(
←

∞∑
k=2

bk

)

+b3 + ...

(
←

∞∑
k=3

bk

)
...

=
∞∑
n=1

∞∑
k=n

bk

� To see the step from line 3 to line 4, note that the sum of the probabilities that
Tj = k for k = n, n+ 1, ... is simply the probability that Tj ≥ n.

� Now consider the product τjqj. We want to show that this product is 1, implying
τj = 1

qj
. Also assume that our initial value is distributed according to the limit

distribution: P (X0 = j) = qj.

τjqj = E [Tj | X0 = j] qj

=
∞∑
n=1

P (Tj ≥ n | X0 = j)P (X0 = j)

=
∞∑
n=1

P (Tj ≥ n,X0 = j)

From line 1 to line 2 we used the above result and the assumption P (X0 = j) = qj.
From line 2 to line 3 we used the general factorization of total probability into
conditional probability and marginal probability.



2 STOCHASTIC PROCESSES 49

� In the current expression
∑∞

n=1 P (Tj ≥ n,X0 = j), distinguish the cases n = 1
and n ≥ 2:

for n = 1 : P

 Tj ≥ 1︸ ︷︷ ︸
always true

, X0 = j

=P (X0 = j)

for n ≥ 2 : P (Tj ≥ n,X0 = j) =P (Xn−1 6= j,Xn−2 6= j, ..., X1 6= j,X0 = j)

� General remark to rewrite joint probabilities:

P (A ∩B) = P (A)− P
(
A ∩BC

)
where BC is the complement of B. To prove this formula, denote the total
space by Ω and note that B ∪BC = Ω and B ∩BC = ∅. Then:

P (A) = P (A ∩ Ω)

= P
(
A ∩

(
B ∪BC

))
= P

(
(A ∩B) ∪

(
A ∩BC

))
= P (A ∩B) + P

(
A ∩BC

)
The last equality holds since B ∩BC = ∅ implies (A ∩B) ∩

(
A ∩BC

)
= ∅ and

probabilities of disjoint sets can simply be added. The following �gure illus-
trates the set relations between Ω, A and B.

� To apply this general remark to P (Xn−1 6= j,Xn−2 6= j, ..., X1 6= j,X0 = j) for
n ≥ 2, choose:

An = {Xn−1 6= j, ..., X1 6= j}
B = {X0 = j}

→ BC = {X0 6= j}

One then obtains:

P

 An︷ ︸︸ ︷
Xn−1 6= j, ..., X1 6= j,

B︷ ︸︸ ︷
X0 = j︸ ︷︷ ︸

An∩B

 = P (Xn−1 6= j, ...X1 6= j)

−P (Xn−1 6= j, ..., X1 6= j,X0 6= j)
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� With all this remarks we can come back to our current expression for τjqj:

τjqj =
∞∑
n=1

P (Tj ≥ n,X0 = j)

= P (X0 = j) +
∞∑
n=2

P (Xn−1 6= j, ..., X1 6= j,X0 = j)

= P (X0 = j) +
∞∑
n=2

[P (Xn−1 6= j, ..., X1 6= j)− P (Xn−1 6= j, ..., X1 6= j,X0 6= j)]

� Now, recall that we chose as initial condition the limit distribution. Since the
limit distribution is also stationary we remain in this distribution inde�nitely.
This allows us to use a kind of translational invariance:

P (Xn−1 6= j, ..., X1 6= j) = P (Xn−2 6= j, ..., X0 6= j)

� Also introduce the notation

an := P (Xn 6= j, ..., X0 6= j)

� Using these insights, we can write:

τjqj

= P (X0 = j) +
∞∑
n=2

[P (Xn−1 6= j, ..., X1 6= j)− P (Xn−1 6= j, ..., X1 6= j,X0 6= j)]

= P (X0 = j) +
∞∑
n=2

[P (Xn−2 6= j, ..., X0 6= j)− P (Xn−1 6= j, ..., X1 6= j,X0 6= j)]

= P (X0 = j) +
∞∑
n=2

(an−2 − an−1)

� This is a telescoping sum of which only the �rst and �last� summand survive.
For a �nite sum:

m∑
n=2

(an−2 − an−1) = a0− a1 + a1− a2 + a2− a3 + ...+ am−2− am−1 = a0− am−1

� Also note that a0 = P (X0 6= j) and

lim
m→∞

am−1 = lim
m→∞

P (Xm−1 6= j, ..., X0 6= j) = 0

since we already know from the previous lemma (stating that regular Markov
chains are recurrent) that we will eventually return to the state j.
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� We can �nally state the desired result:

τjqj = P (X0 = j) +
∞∑
n=2

(an−2 − an−1)

= P (X0 = j) + lim
m→∞

m∑
n=2

(an−2 − an−1)

= P (X0 = j) + a0 − lim
m→∞

am−1

= P (X0 = j) + P (X0 6= j)− 0

= 1

Hence, τj = 1/qj �

Next, we move on to another useful property of (some) Markov chains that is related to
stationary (and limit) distributions. It �nds application in physical systems and in the
approximation of hardly accessible expectation values.

2.2.6 Reversible Markov chains

Consider a chain X0, X1, X2, ... with limit distribution q. Assume that we start in the limit
distribution P (X0 = j) = qj. Then, since q is stationary, we also �nd P (Xn = j) = qj
and even

P (Xk = jk, Xk−1 = jk−1, ..., X0 = j0) = P (Xk+n = jk, ..., Xn = j0)

i.e. we have a translational invariance. But what happens if we do not shift but inverse
the order of the variables?

X0, X1, ...XK → Y0 = XK , Y1 = XK−1, ..., YK = X0

If P (Yk = jK , ..., Y0 = j0) = P (XK = jK , ..., X0 = j0), i.e. if we see no di�erence when
reversing the direction of time (while being in the limit distribution), then the chain is
called reversible.

Counter example:

Consider P =

0.15 0.05 0.8
0.8 0.15 0.05
0.05 0.8 0.15



This chain is not reversible, as can be seen by the clockwise net �ow in the plot. If no such
net �ow existed, the chain would be reversible. This idea is formalized in the following
proposition.
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Proposition A �nite Markov chain with transition matrix P and limit distribution q is
reversible if and only if:

Pjkqk = Pkjqj ∀j, k

Proof: �only if � part:

We assume that the chain is reversible and want to show that Pjkqk = Pkjqj ∀j, k is satis-
�ed. If we consider the joint distribution of two succeeding variables then the reversibility
states:

P (Y1 = j1, Y0 = j0) = P (X1 = j1, X0 = j0)

By using the correspondences Y1 = X0 and Y0 = X1 we can write this as:

P (X1 = j0, X0 = j1) = P (X1 = j1, X0 = j0)

(note that one can reorder the arguments of a joint probability as one likes). Then:

Pj0j1qj1 = P (X1 = j0 | X0 = j1)P (X0 = j1)

= P (X1 = j0, X0 = j1)

= P (X1 = j1, X0 = j0)

= P (X1 = j1 | X0 = j0)P (X0 = j0)

= Pj1j0qj0

The �rst line is simply the de�nition of the transition matrix via the conditional probability
Pjk = P (X1 = j | X0 = k) and the assumption that we start in the limit distribution.
Line 1 to line 2 uses the decomposition of a joint probability in terms of conditional and
marginal probabilities. Next, the reversibility assumption is used. The last two steps are
the same as the �rst two steps but in backward direction.

�if � part:

Now, we assume Pjkqk = Pkjqj ∀j, k and want to show the reversibility of the chain:

P (YK = jK , ..., Y0 = j0)

rename Y↔X = P (X0 = jK , ..., XK = j0)

reorder variables = P (XK = j0, ..., X0 = jK)

de�nition of trans. matrix = Pj0j1Pj1j2 ...PjK−2jK−1
PjK−1jK P (X0 = jK)︸ ︷︷ ︸

qjK︸ ︷︷ ︸
PjKjK−1

qjK−1

assumption Pjkqk=Pkjqj = Pj0j1Pj1j2 ...PjK−2jK−1
PjKjK−1

qjK−1

again = Pj0j1Pj1j2 ... PjK−2jK−1
qjK−1︸ ︷︷ ︸

PjK−1jK−2
qjK−2

PjKjK−1

...

This procedure can be iterated further. In this way, the indices of all matrix elements are
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swapped and the initial qjK becomes qj0 :

P (YK = jK , ..., Y0 = j0)
...

= Pj0j1Pj1j2 ...PjK−1jK−2
qjK−2

PjKjK−1

...

= Pj1j0qj0Pj2j1 ...PjK−1jK−2
PjKjK−1

= PjKjK−1
PjK−1jK−2

...Pj2j1Pj1j0qj0
= P (XK = jK , ...X0 = j0)

But this is just the de�ning criterion of reversibility. �

The condition Pjkqk = Pkjqj ∀j, k is often referred to as detailed balance. One can easily
show that if a transition matrix P and a distribution p are in detailed balance, then p is
stationary (but not necessarily the limit distribution):∑

k

Pjkpk =
∑
k

Pkj︸ ︷︷ ︸
1

pj = pj → Pp = p �

We can also make a short excursion to physical systems.

Consider a physical system with states 1, ..., N and associated energies E (n), then

Gn=
1

Z
e−βE(n)

with Z =
∑
n

e−βE(n) (partition function)

and β =
1

kBT
(inverse temperature)

is the equilibrium distribution. The term 'equilibrium' is often used interchangeably with
'limit' or 'stationary'. A Markov chain with transition matrix P describing the dynamics
of the system is in detailed balance with G: PjkGk = PkjGj.

We now come to an approximation method of expectation values that are di�cult to
calculate analytically (or numerically with brute force).

2.2.7 Markov chain Monte Carlo simulation

Consider some function f (n) and a (limit) distribution q. We are interested in the expec-
tation value

〈f〉q =
∑
n

f (n) qn

and assume that this expression is very di�cult, if not impossible, to evaluate. This might
happen if the state space is in�nite and the function f as well as the distribution q do not
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behave well enough. If there exists a Markov chain with q as its limit distribution then
we know (�time average equals ensemble average�):

∑
n

f (n) qn = lim
K→∞

1

K

K−1∑
k=0

f (Xk)

The right hand side for �nite K can then be used as as an approximation to the desired
expectation value.

Metropolis algorithm

We want to construct a transition matrix P s.t. q is in detailed balance with P (Pjkqk =
Pkjqj). Then q is also stationary under P and with some further conditions also the limit
distribution.

� First, choose a symmetric transition matrix Q (Qnm = Qmn).

� Given that we are in state nk, then:

1. Pick a state m with probability Qm,nk at random.

2. With probability min
{

1, qm
qnk

}
accept the move nk+1 = m, otherwise stay in

the current state: nk+1 = nk.

The resulting process is a Markov chain with a transition matrix that is in detailed balance
with q. One �nds:

Pn′,n =

min
{

1,
qn′
qn

}
Qn′,n if n′ 6= n

Qn,n +
∑

m6=n

(
1−min

{
1, qm

qn

})
Qm,n if n′ = n

For n′ 6= n, Pn′,n is simply the product of the probability to pick state n′ (in step 1) and
the probability to accept this state (in step 2). For n′ = n, Qn,n gives the probability to
pick state n in step 1, which will always be accepted. But we can also stay in state n if
we pick another state m (with probability Qm,n) but reject the move which happens with

probability 1 −min
{

1, qm
qn

}
. We still have to check that P is indeed a transition matrix

that is in detailed balance with q.

� Pn′,n ≥ 0 is easy to see as we only have sums and products of non-negative numbers.
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� Columns sum to one:∑
n′

Pn′,n = Pn,n +
∑
n′ 6=n

Pn′,n

= Qn,n +
∑
m6=n

(
1−min

{
1,
qm
qn

})
Qm,n +

∑
n′ 6=n

min

{
1,
qn′

qn

}
Qn′,n

= Qn,n +
∑
m6=n

Qm,n−
∑
m6=n

min

{
1,
qm
qn

}
Qm,n +

∑
n′ 6=n

min

{
1,
qn′

qn

}
Qn′,n︸ ︷︷ ︸

0

=
∑
m

Qm,n

= 1

In the last step we used that Q is by assumption a transition matrix and thus its
columns sum to one.

� Con�rm detailed balance Pn′,nqn = Pn,n′qn′ : If n′ = n, the equality is trivial. So
consider n′ 6= n:

Pn′,nqn = min

{
1,
qn′

qn

}
Qn′,nqn

= min {qn, qn′}Qn′,n

= min {qn, qn′}Qn,n′

= min

{
1,
qn
qn′

}
Qn,n′qn′

= Pn,n′qn′

From line 1 to line 2 we simply shifted the non-negative qn inside the minimum.
Next, we used the assumption that Q is symmetric: Qn′,n = Qn,n′ . Finally, one can
pull qn′ outside the minimum which yields the desired expression. �

Let us consider again a physical system in equilibrium:

Gn =
1

Z
e−βE(n)

We might be interested in the expectation value:

〈f〉G =
∑
n

f (n)Gn

Apply the Metropolis algorithm (assume we are in state nk and we have chosen an appro-
priate transition matrix Q):

1. Pick a state m with probability Qm,nk .

2. With probability min
{

1, e−β[E(m)−E(nk)]
}
accept the move nk+1 = m.
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� We always accept moves to smaller energies (because the argument of the ex-
ponential function is positive in this case)!

� Moves to larger energies are allowed, but the probability to accept the move
decreases with increasing energy gap.

� Also note that the partition function Z does not appear in the acceptance
probability since it dropped out when taking the quotient of qm and qnk . This
property can be very helpful since Z is often extremely hard to evaluate.

2.2.8 Random walks on graphs

A graph consists of nodes (also called vertices) and edges connecting the nodes. The
number of outgoing edges of a node (that is the number of connected neighbours) is called
its degree. In the following example the degree is written inside the nodes.

Now, assume that the probability to move from one node to any of its neighbours is given
by the reciprocal of its degree. The transition matrix of this process reads:

Pjk =

{
1

deg(k)
if j is connected to k

0 otherwise

The stationary distribution q is given by:

qj =
deg (j)∑
k deg (k)

The sum in the denominator goes over all vertices of the graph (it has to do so in order for
q to be normalized to 1). Introduce the short hand notation D :=

∑
k deg (k). To prove

that q is stationary one can equivalently prove that q is in detailed balance with P :

Pjkqk =
deg (k)

D
·

{
1

deg(k)
if j is connected to k

0 otherwise
=

1

D
·

{
1 if j is connected to k

0 otherwise

The �nal expression is symmetric in j and k (since j is connected to k if and only if k is
connected to j). Hence, Pjkqk = Pkjqj. �

As an example of a problem on a graph consider a knight on a chessboard. Starting at
one position, what is the mean time to return to that position? The question might seem
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challenging for a person inexperienced in Markov chains. But in fact, with our current
knowledge it is very easy to answer. What we are looking for is the mean recurrence time
τj of a state j. We can use the proposition that the mean recurrence time is the reciprocal
of the probability to be in the state in the limit (or stationary) distribution:

τj =
1

qj
=

∑
k deg (k)

deg (j)

So all we have to do is to count the degree of all positions on the chessboard assuming
the allowed movements of a knight. A knight is only allowed to make moves that consist
of two steps in one direction and one step in a perpendicular direction. This rule and the
degrees of all nodes are shown in the following �gures.

One can calculate the total degree of all nodes to:

D =
∑
k

deg (k) = 4 · 2 + 8 · 3 + 20 · 4 + 16 · 6 + 16 · 8 = 336

For a corner position that has degree 2 one �nds:

qcorner =
2

336
=

1

168
→ τcorner = 168

It requires on average 168 steps to return to a corner position!

2.3 Continuous time and discrete space Markov chains

We have �nished our studies of Markov chains with discrete time and discrete space. In
this section we allow time to be continuous while the state space is still assumed to be
discrete.
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{X (t)}t≥0 with discrete state space is a continuous time Markov chain if:

P (X (s+ t) = m | X (s) = n,X (u) = x (u) , 0 ≤ u < s)

= P (X (s+ t) = m | X (s) = n)

∀s, t ≥ 0, ∀m,n, x (u). That is, given that at time s we are in state n, the state at a later
time s+ t does not depend on the history of the system before s.

A continuous time Markov chain is homogeneous if:

Pmn (t) := P (X (s+ t) = m | X (s) = n) ∀s ≥ 0

This means that the evolution of the system shall depend only on the time di�erence t
but not on the absolute value in time s.

Suppose at t = 0 the chain starts at state n (i.e. X (0) = n), then let σn denote the time
it takes until the process leaves n. σn could be called the 'survival time' or 'waiting time'.
Note that σn is a random variable since it will typically require a di�erent amount of time
to leave the state at each run of the chain.

Proposition Consider a homogeneous, continuous time Markov chain, then:

P (σn > s+ t | σn > s) = P (σn > t)

The probability to leave the state in the future does not depend on the time already
spent in the state.

Proof:

P (σn > s+ t | σn > s) = P (X (r) = n, r ∈ [0, s+ t] | X (r′) = n, r′ ∈ [0, s])

= P (X (r) = n, r ∈ [s, s+ t] | X (r′) = n, r′ ∈ [0, s])

used Markov property = P (X (r) = n, r ∈ [s, s+ t] | X (s) = n)

used homogeneity = P (X (r) = n, r ∈ [0, t] | X (0) = n)

= P (σn > t) �
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This property implies that σ is distributed exponentially. The exponential distribution
satis�es (t ≥ 0):

P (σ > t) = e−λt

cumulative distr.: P (σ ≤ t) = 1− e−λt

density function: fσ (t) = λe−λt

E [σ] =
1

λ

This implication can be seen with the following non-rigorous argument:

� We will use without proof that in general if P (σ > s+ t | σ > s) = P (σ > t) is
exponential, then:

lim
∆t→0

P (σ ≤ ∆t)

∆t
= λ

� Then we can derive a di�erential equation for P (σ > t) in the following way:

P (σ > t+ ∆t) = P (σ > t+ ∆t | σ > t)P (σ > t)

= P (σ > ∆t)P (σ > t)

where we simply used the previous proposition. Now, subtract P (σ > t) from both
sides of the equation, divide by ∆t and consider the limit ∆t→ 0:

P (σ > t+ ∆t)− P (σ > t) = − [1− P (σ > ∆t)]︸ ︷︷ ︸
P (σ≤∆t)

P (σ > t)

⇒ lim
∆t→0

P (σ > t+ ∆t)− P (σ > t)

∆t
= − lim

∆t→0

P (σ ≤ ∆t)

∆t︸ ︷︷ ︸
λ

P (σ > t)

⇒ d

dt
P (σ > t) = −λP (σ > t)

� The solution of this equation is just the exponential function:

P (σ > t) = P (σ > 0)︸ ︷︷ ︸
1

e−λt

→ P (σ ≤ t) = 1− e−λt

The latter is the cumulative distribution function of the exponential distribution.

The parameter λ is often called rate (in the lecture sometimes also intensity). Each state
n has its own rate λn leading to an exponential distribution with density

fσn = λne
−λnt, t ≥ 0

for the survival time σn of state n. Be careful not to confuse σn and λn. σn is a random
variable. Its value gives the time the system stays in state n until the next transition
occurs. Since σn is a random variable this time is di�erent for any visit of state n. The
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expected value of this time is E [σn] = 1
λn
. In the context of �time� λn is not a time but a

rate!

After the time σn has elapsed the system jumps (i.e. performs a transition) to another
state m with probability:

pmn := P (X (σn) = m | X (0) = n)

Note that by construction pnn = 0 since σn is de�ned as the time after which we leave
state n. We can choose the initial time as 0 since we are considering homogeneous Markov
chains where only the time di�erence matters. Further remarks:

� X (σn) is independent of σn in the sense that the probability for the next state does
not depend on the waiting time. This follows by the Markov assumption that only
the knowledge of the presents matters. We do not prove this statement here.

� As a consequence, in the sequence of transitions and waitings, all transitions and
waitings are independent.

� Note the di�erence between Pmn (t) and pmn:

� Pmn (t) = P (X (t) = m | X (0) = n) is the probability to be in state m after
time t given that we are currently in state n. An arbitrary number of transitions
in between is allowed.

� pmn = P (X (σn) = m | X (0) = n) is the probability that the next transition
(which occurs after the waiting time σn) is to state m, given that we are cur-
rently in state n. There are no other transitions in between.

� For small times ∆t one could expect that there is a strong relation between these
quantities since for small times the probability for additional transitions should be
small.

To make the last point precise, let us consider the �escape rate of state n�, 1−Pnn(∆t)
∆t

, and

the �escape rate from n to a speci�c state m�, Pmn(∆t)
∆t

:

Lemma

� lim∆t→0
1−Pnn(∆t)

∆t
= λn

� lim∆t→0
Pmn(∆t)

∆t
= pmnλn

First, note that the second statement implies the �rst one (by summing over m 6= n and
realizing

∑
m6=n Pmn (∆t) = 1− Pnn (∆t)):

lim
∆t→0

1− Pnn(∆t)

∆t
= lim

∆t→0

∑
m 6=n

Pmn(∆t)

∆t

=
∑
m6=n

lim
∆t→0

Pmn(∆t)

∆t

=
∑
m6=n

pmn︸ ︷︷ ︸
1

λn

= λn
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To see the last step, note that pmn forms a probability vector for �xed n (since the proba-
bility to jump anywhere is 1) and pnn = 0 by construction. For �nite state spaces (and thus
a �nite sum) the swap of lim∆t→0 and

∑
m 6=n is unproblematic. For in�nite state spaces

some technicalities may have to be taken into account. (This implication and hence the
necessary arguments were not mentioned in the lecture!)

Furthermore, the statements of the lemma can be rewritten in terms of a Taylor expansion:

� Pnn (∆t) = 1− λn∆t+ o (∆t)

� Pmn (∆t) = pmnλn∆t+ o (∆t)

The small-o notation shall mean lim∆t→0
o(∆t)

∆t
= 0. Now, let us sketch the proof of the

second statement of the above lemma. It will only be a sketch, since at one important
step we assume without proof that for small times only the �one transition path� has to
be taken into account while the probability for more transitions in between is negligible
(o (∆t)).

Pmn (∆t) = P (X (∆t) = m | X (0) = n)

unproven step = P (X (σn) = m,σn < ∆t | X (0) = n) + o (∆t)

independence of σn and X(σn) = P (X (σn) = m | X (0) = n)︸ ︷︷ ︸
pmn

P (σn < ∆t)︸ ︷︷ ︸
1−e−λn∆t

+o (∆t)

⇒ Pmn (∆t)

∆t
=

pmn
(
1− e−λn∆t

)
+ o (∆t)

∆t

=
pmn (1− 1 + λn∆t) + o (∆t)

∆t
→

∆t→0
pmnλn

In the second last step we used ex = 1 + x+ o (x). �

The result of this lemma suggests the de�nition of the transition rate from n to m as:

λmn := pmnλn

Remarks:

� Note again that since pnn = 0 also λnn = 0.

�
∑

m λmn =
∑
m

pmn︸ ︷︷ ︸
1

λn = λn

� pmn = λmn
λn

= λmn∑
m′ λm′n

Finally, let us give an overview of the appearing (and related) quantities:

� Pmn (t): probability to be in state m after time t given that we are currently in state
n.
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� pmn: probability that the next state is m given that the current state is n.

� λmn: transition rate from state n to m.

� λn: total transition rate (�escape rate�) away from state n.

We now seek for a numerical implementation of the decomposition of a continuous time
Markov chain in terms of waitings and transitions.

2.3.1 Gillespie algorithm

Consider that we want to simulate the continuous time, homogeneous Markov chain
{X (t)}t≥0. Assume that we know the rates λmn.

� Construct the discrete, homogeneous Markov chain {Xk}k∈N with transition proba-
bilities pmn (obtained from the λmn) to generate a sequence of states.

� Construct a sequence of independent, exponentially distributed random variables
{Ek}k∈N with rate λ = 1.

� To obtain the �nal sequence of waiting times (or rather times at which the transi-
tions occur), construct a sequence {Tk}k∈N. Start with T0 = 0 and then calculate
iteratively:

Tk+1 = Tk +
Ek
λXk

The expression Ek
λXk

is the waiting time σXk . Since Ek was drawn from an exponential

distribution with rate λ = 1, σXk will (as desired) follow an exponential distribution
with rate λXk .
(In detail, this means that from fEk (t) = e−t it follows f Ek

λXk

= λXke
−λXk t. This

transformation behaviour can for example be understood by considering expectation
values: In general, the expectation value of the exponential distribution with rate
λ is 1

λ
. Then E [Ek] = 1. From the linearity of the expectation value it follows:

E
[
Ek
λXk

]
= 1

λXk
(note that once the sequence {Xk} is determined and we �x k, λXk is

just a constant). It is also intuitive that the resulting distribution should again be an
exponential distribution. The expectation value then determines the rate λ = λXk .)

� Finally de�ne X (t) = Xk for t ∈ (Tk, Tk+1] to obtain the continuous time Markov
chain. A graphical representation could be:

T0T1T2T3
σ0σ1σ2

X0=2

1
2
3
4
5

X1=4
X2=3

X3=1
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Application

The Gillespie algorithm can be applied to the stochastic Lotka Volterra model. In general,
the Lotka Volterra model describes populations of predator and prey. In the deterministic
model the two populations are described by two coupled di�erential equations:

dR

dt
= aR− bRF

dF

dt
= cRF − gF

R describes the population of the prey, for example rabbits, while F stands for the predator
population (e.g. foxes). The single terms correspond to:

rabbit reproduction rate: aR

fox reproduction rate: cRF

rabbit death rate: bRF

fox death rate: gF

Starting with R = 100 rabbits and F = 100 foxes and choosing the parameters a = 1,
b = 0.02, c = 0.01 and g = 1 one �nds the following (numerical) solution of the system of
equations:
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The solution is perfectly periodic. In general, there are more rabbits than foxes (this is
because b = 2c: �the birth of one fox requires the death of two rabbits�). A maximum of
the rabbit population is followed by a maximum of the fox population. This makes sense,
since even when there are enough rabbits to feed all the foxes it should take some time
for the foxes to reproduce. But there are also several �aws in the deterministic version
of the model. First, the populations can take non-natural numbers and second there is
absolutely no randomness in the model. This is in contrast to nature, where only natural
numbers for populations are sensible and randomness should be included as well. Both
aspects are respected by the stochastic Lotka Volterra model:

� We have a discrete state space (R,F ) ∈ N2.
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� We allow only nearest neighbour transitions. This means, only one of the actions
'rabbit is born', 'fox is born', 'rabbit dies', 'fox dies' occurs at the same time (this
makes sense since on su�ciently short time scales no events should occur simultane-
ously).

F

R

� Similar to the meaning of the single terms in the di�erential equations of the deter-
ministic model, we de�ne the rates of the stochastic model in the following way:

rabbit reproduction rate: λ(R+1,F ),(R,F ) = aR

fox reproduction rate: λ(R,F+1),(R,F ) = cRF

rabbit death rate: λ(R−1,F ),(R,F ) = bRF

fox death rate: λ(R,F−1),(R,F ) = gF

One can now implement the Gillespie algorithm. As before, start with R = 100 rabbits
and F = 100 foxes and choose the parameters a = 1, b = 0.02, c = 0.01 and g = 1.
Since the process is stochastic we get a di�erent solution every time we run the process.
Consider the following two example solutions:
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The �rst plot looks similar to the deterministic solution. However, the periodicity is not
perfect anymore. Di�erent peaks are of slightly di�erent shape and in particular height.
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Small �uctuations are visible. The discreteness might be di�cult to see due to the choice
to plot lines connecting the single points. In the second solution both predator and prey
become extinct. In this case, �rst the fox population dropped very low (near extinction).
Without enough predators the prey population could grow very large. As a consequence,
the predator population recovers and grows very large as well, while at the same time the
rabbit population shrinks dramatically (due to the large rabbit population the fox birth
rate grows large, then, due to the large fox population the rabbit death rate hugely exceeds
the rabbit birth rate). Even single �uctuations (a single dying fox or a single born rabbit)
can barely change this behaviour anymore. After all rabbits died, the foxes have nothing
left to eat. Hence, the foxes become extinct as well. For the chosen parameters and initial
populations this scenario occurs quite often (even after this rather short time).

A third option is that the foxes die out �rst. (In the deterministic plot the fox population
drops very low at its minima. Fluctuations can then lead to extinction.) The rabbit
population would then grow exponentially.

The frequent occurrence of the extinction scenarios can be explained by the small initial
populations and by the simplicity of the Lotka Volterra model. Increasing the initial
populations (and the parameters b and c as well as the step size in a way that conserves
the relative behaviour and the time scale) lets the evolution resemble more and more that
of the deterministic model. The susceptibility to �uctuations decreases. Extinction occurs
less likely. Apart from that, the model takes only two species into account. In nature
there might be more predators that hunt rabbits and other preys that can feed the foxes.
Also other environmental in�uences might play a role.


