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1 Preface

This thesis is divided into two parts. In the first half, we will define and discuss notions
as theHeisenberg group, thecharacteristic functionand theWigner functionin the con-
text of finite-dimensional quantum systems. As the purpose of this part is toconstruct
and toexplainthese phase-space related concepts, it is written in a more narrative style.
The second part of the thesis aims at contributing to a long-standing open problem in
the theory of stabilizer codes. In order to achive rigour, a formal, mathematical style
of presentation has been employed.
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Part I

From the Heisenberg Group to
Discrete Wigner Functions

7



2 Introduction

In Ref. [3] Wigner introduced a representation of hermitianoperators on a complex
Hilbert space by real functions onR2 to solve a thermodynamical problem. The
Wigner functions associated to density operators have triggered fantasies of physicists
ever since, because they resemble some features of classical probability distributions
on phase space and allow for a visualization of quantum states. Beginning with the
work of Wootters [4], the question arose of how Wigner functions could be defined for
finite dimensional quantum systems. As any generalization of a concept is non-unique,
a whole collection of different proposals appeared in the literature (see for example
Ref. [4, 5, 6, 7, 8, 10]). The question that started of this work is, can we formulate the
definition of the Wigner function using only terms that have awell-defined meaning
in both the finite and the infinite setting? Candidates for such notions would bealge-
braic fields, Fourier transformationsor vector spaces with forms. Such a formulation
might lead to a somewhat canonic definition of the discrete offspring of the well-known
concept. As a next step one can ask whether such a formulationfacilitates the under-
standing of the connection of Wigner functions to other phase space related concepts,
such as theWeyl representation, thecharacteristic functionof a density operator or the
stabilizer formalismused in quantum information theory.

The preceding paragraph lays down the road map for this first part. We will restrict our
discussion to finite systems, but, at each point, it should bestraight-forward to recover
the well-known continuous definitions by substituting finite fields, vector spaces or
Fourier transformations by their infinite cousins.

3 Mathematical Preliminaries

In this section, we will shortly comment on some mathematical concepts that are not
generally used by physicists.

3.1 Fields

The notion of analgebraic fieldis basic to algebra and there should be no need to
introduce it. Therefore, we will only list some useful factsonfinite fields, mostly taken
from Ref. [1].

1. All finite fields have prime-power order. Letd = pr be a power of a primep.
Then there is one unique finite field of orderq, denoted byFq.

2. Fields of prime orderp are isomorphic to the familiararithmetic modulop of
residue classesZ/〈p〉.

3. Fields of prime power orderd = pr can be constructed byextendingFp. In this
case,Fp is refered to as thebase fieldof Fpr . There is a subfield inFpr which is
isomorphic to the base field.

4. If Fd, d = pr is an extension field ofFp, then theadditivestructure ofFd is
isomorphic to ther-fold Cartesian product of the base fieldF

r
p. In that sense,

8



an extension field can be viewed as anr-dimensional vector space over the base
field. Taking that point of view, it is natural to call a subsetB = {fi}i=1···r of
Fd abasisif the span ofB with coefficients in the base field is all ofFd.

5. A field iscyclic if every elementa of F can be written as

a = 1 + · · · + 1 (1)

that is, if its additive structure is a cycle group. Using theRemarks 2 and 4 it is
easy to see that a field is cyclic if and only if it is of prime order.

6. LetFd, d = pr be an extension field. The trace operator is defined by

Tr f =
r−1
∑

k=0

fdk

. (2)

The range of the trace is the base field and, further,Tr is Fp-linear. Therefore,
the function

〈f, g〉 7→ Tr(fg) (3)

is a bilinear form which can be checked to be non-degenerate.It thus defines a
scalar product onFd viewed as anFp-vector space.

7. Let{fi} be a basis ofFd. There always exists a set{f i} such that

〈fi, f
j〉 = δj

i . (4)

Such a set is called adual basisof {fi}. Self-dual basesdo not always exist.
However, for extensions ofF2, their existence is guaranteed [1].

3.1.1 Computer Implementation

A set of packages for the computer algebra system Mathematica has been developed
alongside with the theoretical work in this thesis1. At the end of each paragraph, we
will present the computer routines that correspond to the newly introduced concepts.
These ’Computer Implementation’ sections serve both as examples to the abstract con-
cepts and as a documentation of the computer program.

The computer implementation is distributed over a couple ofMathematica.m-Pack-
ages. The primary package ishead .m, which must be loaded in the first line of any
notebook that uses the library.

In[1]:= << head .m

Next, load in the finite fields package. It extendsMathematica’sbuilt in finite fields
support.

In[2]:= << finiteFields .m

The package requires the global variablesp andr to be set.

In[3]:= p = 3; r = 2;

1These packages are available for download at http://gross.qipc.org/.
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It defines the global variableF which represents the extension field of orderpr over
Fp.

In[4]:= F

Out[4]= GF[3,{2,1,1}]

The following lines show how field elements are entered and printed. The format is
explained in the documentation ofMathematica.

In[5]:= F[{1, 0}]

Out[5]= {1,0}3

The natural operations are addition...

In[6]:= F[{1, 1}] + F[{2, 0}]

Out[6]= {0,1}3

...and multiplication.

In[7]:= F[{1, 1}]F[{2, 0}]

Out[7]= {2,2}3

Unlike Mathematica, thefiniteFields package supportsmixedoperations involv-
ing integers and field elements.

In[8]:= 2F[{1, 1}] + 1

Out[8]= {0,2}3

The integers are converted to field elements by use of the function enf [] (which ab-
breviates ’enforce field’). It is a wrapper toMathematica’sFromElementCode [].

In[9]:= enf [2]

Out[9]= {2,0}3

The inverse offec [] is tec [], a wrapper forToElementCode [].

In[10]:= tec [enf [2]]

Out[10]= 2

The variableinv stands shorthand for the multiplicative inverse of two.

In[11]:= inv

Out[11]= {2,0}3

In[12]:= % F[{2, 0}]

Out[12]= {1,0}3

Lastly, the trace has been implemented.

In[13]:= Tr [F[{2, 2}]]

Out[13]= {2,0}3

10



3.2 Characters

LetG be a finite abelian group. Acharacterχ ofG is a homomorphism fromG into the
circle groupS1, that is, the set of complex numbers of modulus one with multiplication
of complex numbers as the group composition law. The pointwise product of two
characters is again a character and – if the inverse is definedvia χ−1 := χ∗ – the set
of all characters ofG becomes a group of its own. This group is calledG’s dual group
and denoted bŷG. The duality relation is symmetric in that an element ofG can be
viewed as a character of̂G by setting

g(χ) := χ(g) (5)

for g ∈ G,χ ∈ Ĝ. To stress the symmetry between the group and its dual, we write

〈χ|g〉 := 〈g|χ〉 := χ(g). (6)

Finite abelian groups have the pleasant property of being isomorphic to their respective
dual groups. However, in general there is nocanonicway of identifyingG with Ĝ. In
the sequel we will construct isomorphismsG→ Ĝ for some specific examples.

The following fact should be kept in mind:

∑

g∈G

〈χ|g〉〈g|ζ〉 = |G| δχ,ζ−1 . (7)

3.2.1 Characters of Finite Fields

If F = Fp is of prime order, then

a 7→ χa(·) := ωa· (8)

is an isomorphismF → F̂ for all non-trivialpth roots of unityω. There is no loss of
generality in choosingω = ei 2π

p .

If Fd is an extension ofFp, then

b 7→ χb(·) := χFp
(Tr b ·) (9)

is an isomorphism for all non-trivial charactersχFp
of the base field.

The maps presented in the last two paragraphs are certainly group homomorphisms.
The fact that they are bijective (and thus isomorphisms) canbe proven by a simple
counting argument, making use of the fact that the additive structure of finite fields is
abelian and thus isomorphic to its dual.

3.2.2 Computer Implementation

The following definitions of characters for finite fields are taken from the package
heisenberg .m.

In[14]:= Ω := NAExp AI
2 Π

p
EE
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In[15]:= Χ[x_?FieldOrNumericQ ] := ΩˆTr [x]

In[16]:= Χ[x_?FieldOrNumericQ , y_?FieldOrNumericQ ] := ΩˆTr [x y ]

The arguments toΧ can either be elements of the finite fieldF or integers.

In[17]:= << heisenberg .m

In[18]:= qInit [1, 3]

In[19]:= Χ[2]

Out[19]= -0.5 - 0.866025 ä

In[20]:= Χ[F[{2}], 2]

Out[20]= -0.5 + 0.866025 ä

3.3 Finite Symplectic Geometry

We repeat some facts from the theory of finite vector spaces with a symplectic form.
The standard reference of this section is Ref. [2].

A finite vector spaceV is calledsymplecticif it possesses a non-degenerate bilinear
form [·, ·] which is anti-symmetric

[v, w] = −[w, v]. (10)

ShouldV be defined over a field of characteristic two, then we additionally demand
the form fulfills

[v, v] = 0. (11)

Given a subspaceM of V , thesymplectic complementM⊥ is the set of allv ∈ V such
that [v,m] = 0 for all m ∈ M . M is said to beisotropic, if the form vanishes onM ,
that is if [m1,m2] = 0 for all m1,m2 ∈M .

The following assertions hold.

1. Any finite symplectic vector space is even-dimensional.

2. For any subspaceM of V ,M⊥ is a subspace ofV . Further,

dimM + dimM⊥ = dimV. (12)

3. There always exists a basis{p1, · · · , pn, q
1, · · · , qn} of V such that

[pi, pj ] = 0 (13)

[qi, qj ] = 0

[pi, q
j ] = δj

i .

A set of that kind is called asymplectic basis. The tuples〈pi, q
i〉 arehyperbolic

pairs.

4. If M is isotropic thenM ⊂M⊥. The maximum dimension of an isotropic space
is (dimV )/2. A space that reaches this limit ismaximal isotropic. M is maximal
isotropic if and only ifM⊥ = M .

Symplectic vector spaces will subsequently be referred to asphase spaces. We reserve
the letterV to stand for phase spaces.

12



3.4 Fourier Transformation and Convolution

Let G be a finite abelian group and letL1(G) denote the set of all complex valued
functions onG. Then the Fourier operator onG is defined via

F : L1(G) → L1(Ĝ) (14)

f̂(χ) := (Ff) (χ) =
1√
d

∑

t∈G

f(t)〈χ|t〉.

The inverse is
(

F−1f̂
)

(t) =
1√
d

∑

χ∈Ĝ

f̂(χ)〈t|χ〉 (15)

Using Eq. (7), it can easily be seen thatF ◦ F−1 = 1.

There are several mathematical structures that can naturally be associated to the set
L1(G) [15]. Obviously, pointwise addition and scalar multiplication turn it into a vec-
tor space, while pointwise multiplication of functions makes it an algebra. There is a
second natural possibility to define an algebra structure onL1(G), namely by using
convolution. For two functionsf , g onG, we define their convolution as

(f ∗ g)(t) =
∑

s∈G

f(s)g(ts−1). (16)

The same structure is of course present onĜ.

The choice of coefficients in the above definition of the Fourier transformation is such
that the transformation becomes anisometry. Indeed, define the norm of a function
f ∈ L1(G) to be

||f ||2 :=
∑

g∈G

|f(g)|2 (17)

and similarly for functions on̂G, then||f || = ||f̂ || (this relation is sometimes called
theParseval formula).

There would have been a different natural possibility to choose the pre-factors in Eq.
(14). Indeed, it is easily checked that

F(fg) =
1√
d
F(f) ∗ F(g) (18)

and thusF maps the product algebra ofL1(G) to the convolution algebra ofL1(Ĝ)
moduloa factor of

√
d. In Ref. [13] it is noted that in the definition of the Fourier

transform for functions onRn pre-factors can be choosen in a way that makesF si-
multaneously an isometry and an algebra homomorphism. However, in the finite setting
there seems to be no elegant means for that. In this document,we opted for preserv-
ing the isometry-property at the price of some factors in allformulas that make use of
convolution.

The relation (18) is illustrated in the following diagram. We will frequently make use
of such graphic representations in vague resemblance ofcommutative diagramsfrom

13



category theory. Owing to a bad physicists’ habit, we label the vertices not by objects
or sets, but with ’representative’ elements, such asf̂ instead ofL1(Ĝ).

f, g
F - f̂ , ĝ

f · g

·
? F- f̂ ∗ ĝ 1√

d

1√
d
∗

?

If w : G → U(H) is a unitary representation ofG, thenw induces a representation of
the convolution algebraL1(G) (see Ref. [15]) by setting, for allf ∈ L1(G),

w(f) :=
∑

a∈G

f(a)w(a). (19)

Indeed, letf, g ∈ L1(G), then

w(f ∗ g) =
∑

a∈G

(

∑

b∈G

f(ab−1)g(b)

)

w(a) (20)

=
∑

b

∑

x=ab−1

f(x)g(b)w(xb)

=

(

∑

x

f(x)w(x)

)(

∑

b

g(b)w(b)

)

= w(f)w(g).

As a last remark, making use of the isomorphism (8), we we can write the Fourier
transform of anf ∈ L1(F) as a function onF itself once a faithful characterχ of F has
been fixed:

f̂(a) := f̂(χa) =
1√
d

∑

b∈F

〈χ|ab〉∗f(b). (21)

3.4.1 Symplectic Fourier Transformation

Consider a symplectic vector spaceV over a finite fieldF. Suppose a characterχ of F

has been chosen.χ immediately induces an isomorphism fromV to V̂ via

χa(·) := χ([a, ·]) (22)

for a ∈ V . Making use of the above relation, we can define a Fourier transforma-
tion for functions onV , which we will refer to assymplectic Fourier transformation.
Specifically, for a vector spaceV of dimension2n over a fieldF of orderd, we set

(F̃F )(a) := F̃ (a) (23)

:=
1

dn

∑

b∈V

〈χa|b〉∗F (b)

=
1

dn

∑

b∈V

χ([a, b])∗F (b).

14



The symplectic Fourier transformation is covariant under the action of theSymplectic
GroupSp(F2n):

F̃(F ◦ S)(a) =
1

dn

∑

b∈V

χ([a, b])∗F (Sb) (24)

=
1

dn

∑

b∈V

χ([a, S−1b])∗F (b)

=
1

dn

∑

b∈V

χ([Sa, SS−1b])∗F (b)

=
1

dn

∑

b∈V

χ([Sa, b])∗F (b)

= F̃(F )(Sa).

It comes as no surprise, that multiplying a phase space function by a character corre-
sponds to shifting its symplectic Fourier transform

F̃(χ([v, ·])F )(a) =
1

dn

∑

b∈V

χ([a, b])∗χ([v, b])F (b)

=
1

dn

∑

b∈V

χ([a− v, b])∗F (b)

= (F̃F )(a− v).

Lastly, the symplectic Fourier transform is self-inverse

F̃ ◦ F̃ = 1 (25)

as can been seen as follows:

F̃(F̃F )(a) =
1

d2n

∑

b∈V

χ([a, b])∗
∑

c∈V

χ([b, c])∗F (c) (26)

=
1

d2n

∑

c,b

χ([a, b])∗χ([c, b])∗F (c)

=
1

d2n

∑

c

d2nδc,aF (c)

= F (a).

3.4.2 Computer Implementation

The definition of the symplectic Fourier transformation from heisenberg .mreads

In[21]:= SFT[f_ ][P_, Q_] :=

1

d
FSum[Conjugate@ Χ[P #2 - Q #1]f [#1, #2] &, 2]

It is a functinal, that is, the argumentf must be anpure functionin the terminology
of Mathematica. More precisely,f must be a phase space function, meaning: it must

15



take two arguments from the finite fieldF. It can return an object of any type for
which addition and scalar multiplication is defined. In the next example,f will return
real numbers, but later on we will encouter an example of a Fourier transform of an
operator valued functional.

In[22]:= << heisenberg .m

The functionqInit [] will be documented later.

In[23]:= qInit [1, 3]

In[24]:= f = tec [#1] + tec [#2] &;

Our samplef converts its arguments to real numbers usingtec [] from the package
finiteFields .mand adds them together.

In[25]:= f [F[{1}], F[{2}]]

Out[25]= 3

We will often be concerned with pure functions on phase space(similar to f ). Some-
times it is convenient to look at all their values at once. Thefunctionf2a [], defined
in finiteFields .m, converts a pure phase space function into an array.

In[26]:= f2a [f ] // MatrixForm

Out[26]=
æçççççç
è

0 1 2
1 2 3
2 3 4

ö÷÷÷÷÷÷
ø

For the sake of completeness, here is the converse,a2f []:

In[27]:= a2f [f2a [f ]] [F[{1}], F[{2}]]

Out[27]= 3

It is time to see howSFT actually works:

In[28]:= SFT[f ][0, 0]

Out[28]= 6

Alternatively, in the spirit of what has been said before, wecan look at all values of
SFT[f ] at once.

In[29]:= f2a [SFT[f ][#1, #2]&] // MatrixForm

Out[29]=
æçççççç
è

6 -1.5 - 0.866025 ä -1.5 + 0.866025 ä
-1.5 + 0.866025 ä 0 0
-1.5 - 0.866025 ä 0 0

ö÷÷÷÷÷÷
ø

16



4 The Heisenberg Group

4.1 Motivation

If a quantum system possesses a symmetry, then there should exist a unitary, irre-
ducible, possibly projective representation of the symmetry group (see for example
Ref. [11]). Probably the best-known example is the Galilei symmetry, that is the trans-
lational and boost invariance of a single free quantized mass point moving inRn. The
associated classical symmetry group is of courseR2n. The unitary irreducible projec-
tive representation ofR2n is given by the famousWeyl representationspecified by the
canonical commutation relations. Instead of seeing the Weyl representation as a pro-
jective representation ofR2n, we can perceive the group generated by the operators of
the Weyl representation as an abstract group of its own. The group obtained this way
is commonly called theHeisenberg groupand will be defined in this paragraph.

4.2 Definition

Let F be a field not of characteristic two. We define theHeisenberg groupH(F) ab-
stractly by its composition law

(p1, q1, t1)(p2, q2, t2) (27)

= (p1 + p2, q1 + q2, t1 + t2 + 2−1

[(

p1

q1

)

,

(

p2

q2

)]

)

wherepi, qi andti are elements ofF and[·, ·] denotes thestandard symplectic inner
producton the vector spaceF2:

[(

p1

q1

)

,

(

p2

q2

)]

(28)

:=

(

p1

q1

)T

J
(

p2

q2

)

J := JF2 :=

(

0 1
−1 0

)

.

In a physical context thecommutation relationcorresponding to the composition law
(27) is often of interest. It is given by

(p1, q1, t1)(p2, q2, t2) (29)

= (p2, q2, t2)(p1, q1, t1)(0, 0,

[(

p1

p2

)

,

(

q1
q2

)]

).

The Heisenberg group enters the quantum scene through theWeyl representationwhich
maps the group to operators on the Hilbert spaceCd, whered is the order ofF.
The representation is constructed as follows. Fix a character χ of F, choose a basis
{|φ1〉, · · · , |φd〉} in H. Define theshift andclockoperators as

x(q) : |φk〉 7→ |φk+q〉 (30)

z(p) : |φk〉 7→ χ(pk)|φk〉

17



for all k = 1 · · ·d. Then the Weyl representation is

w(p, q, t) := χ
(

t− 2−1pq
)

z(p)x(q). (31)

We call the image ofw the set ofWeyl operators. It is easy to see from (27) that two
Weyl operatorsw(p1, q1, t2) andw(p2, q2, t2) commute if the symplectic inner product

[(

p1

q1

)

,

(

p2

q2

)]

(32)

vanishes. The converse is true if the characterχ is faithful (which is always the case if
χ is non-trivial andF has prime order, but it can never be fulfilled for extension fields;
see Section 7.6).

The definition of the Heisenberg group extends naturally to finite vector spacesFn.
Indeed, if we define

JF2n =

n
⊕

i=1

JF2 (33)

then the definition (27) makes sense ifpi andqi are elements ofFn. We denote the
group defined this way byHn(F). The Weyl representation ofHn(F) is defined as

(p, q, t) 7→ χ(t)w(p1, q1) ⊗ · · · ⊗ w(pn, qn) (34)

where{pi}, {qi} are the components ofp andq with respect to the natural basis inF
n.

It is customary to choose coordinates in the symplectic vector spaceF2n by mapping
(p1, q1)

T ⊕· · ·⊕(pn, qn)T to (p1, · · · , pn, q1, · · · , qn)T . We call this conventionfunc-
tion coordinates, as the primary sorting criterion for the coordinates is their function
(i.e. ’momentum’ or ’position’). In contrast, when one is interested in questions con-
cerning locality, it turns out to be advantageous to sort thecoordinates first according to
thesystemthey act on. Thus, in this thesis we will write(p1, q1, p2, q2, · · · , pn, qn)T

for the direct sum mentioned above and refer to this notationassystem coordinates.
For example, in system coordinates, the symplectic matrixJ takes on the form























(

0 1
−1 0

)

(

0 1
−1 0

)

. . .
(

0 1
−1 0

)























. (35)

For future reference, we given the action of a Weyl operator on a state vector in co-
ordinates. Let|ψ〉 be a state vector inH with expansion coefficients〈x|ψ〉 =: ψ(x).
Then

(w(p, q, t)ψ) (x) = χ(t+ px− 2−1pq)ψ(x− q). (36)
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4.3 The Qbit Case

For fields of characteristic two, the definition (27) cannot be applied, as the symbol
2−1 has no meaning in this case. However, there still exists a projective representation
of F2 defined in an analogous way. Specifically, we set

w(p, q) := i−pqz(p)x(q) (37)

for p, q ∈ F2 and extend this definition to multiple systems as in Eq. (34).The crucial
difference to Eq. (31) lies in the fact thati is a 4th root of unity, as opposed to a 2nd.
The group generated by{w(p, q)}p,q is called thePauli group. We will also refer to it as
the Heisenberg group for qbits, even though it does not fulfill the defining composition
law (27). There is a formal analogy leading from Eq. (31) to Eq. (37). Namely, if the
characterχ equalsχ(·) = e

2π
d
· then the non-binary Weyl representation reads

w(p, q) = e−
2π
d

2−1pqz(p)x(q) (38)

and Eq. (37) follows by replacing2−1 by 1
2 , which is the inverse of 2 inR as opposed

to F.

The composition law for two binary Weyl operators can be checked to be

w(p1, q1)w(p2, q2) = w(p1 + p2, q1 + q2) (39)

ip1q2−p2q1

i(p1+p2)(q1+q2) mod 4

i−(p1+p2)(q1+q2) mod 2

which reduces for single systems (n = 1) to

w(p1, q1)w(p2, q2) = w(p1 + p2, q1 + q2) (40)

ip1q2−p2q1

(−1)p1q1q2+p2q1q2+p1p2q1+p2p2q1 .

Technically speaking, the Heisenberg group for qbits is an extension ofZ4 by F
2n
2 ,

while the non-binary Heisenberg group extendsFd by F
2n
d .

For future use we define a variant of (37) (compare to Ref. [20]):

τ(p, q) := z(p)x(q) (41)

= ipqw(p, q).

4.4 Computer Implementation

In[30]:= << head .m

<< qmatrixHead .m

<< heisenberg .m

package qmatrix, version 2.2.1

(C) Timo Felbinger (timo@felbinger.net), 1999, 2000, 2001

last modified : 20010430.210546utc by : timof@amadeus

This package is free software and you are welcome to

redistribute it; type qmatrix‘license for the details.

Type qmatrix‘help to get help on this package.

19



Before we turn to the describtion of the Weyl representationdefined in the package
heisenberg .m, let us briefly take a look at the general framework of the packages.
The system presented here builds on Timo Felbinger’sqmatrix package [16]. It is
not loaded directly, but instead via the wrapperqmatrixHead .mwhich defines some
additional functionality.

After the packages have been loaded, every notebook should start with a call to the
functionqInit []. It initializes theqmatrix package to suit our needs. The first
argument specifies how many systems to work with, the second argument gives the
dimension of their respective Hilbert space.

In[31]:= qInit [2, 3]

The subsystems are labledq1 to qn .

In[32]:= system

Out[32]= {{q1,q2}}

However, in order to facilitate writting functions that address different systems auto-
matically, the names of the systems can be entered asq with the number of the system
given as a subscript.

In[33]:= q1

Out[33]= q1

Among other useful functions, the packageqmatrixHead .mdefines the function
toAbstract [] which gives a more readable output for state vectors and operators
in terms of the computational basis.

In[34]:= matrix [{1, 0, I },{ket [q1]}] // toAbstract

Out[34]= |0 > +ä |2 >

We go on to introduce the implementation of the Weyl representation.

Theshift operatorX takes two arguments. First the number of the system it acts onand
second the field element specifiying the shift.

In[35]:= X[1, F[{1}]]

Out[35]=

æçççççç
è

0. 0. 1.

1. 0. 0.

0. 1. 0.

ö÷÷÷÷÷÷
ø

{ket[q1],bra[q1]}

Alternatively, we can specify the shift by an integer which will be converted to a field
element using theenf [] function fromfiniteFields .m.

In[36]:= X[1, 1]

Out[36]=

æçççççç
è

0. 0. 1.

1. 0. 0.

0. 1. 0.

ö÷÷÷÷÷÷
ø

{ket[q1],bra[q1]}

Theclockoperators and, finally, the Weyl operators are defined in the same fashion.

In[37]:= Z[1, 1]

Out[37]=

æçççççç
è

1. 0. 0.

0. -0.5 + 0.866025 ä 0.

0. 0. -0.5 - 0.866025 ä

ö÷÷÷÷÷÷
ø

{ket[q1],bra[q1]}
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In[38]:= W[1, 1, 1]

Out[38]=

æçççççç
è

0. 0. -0.5 + 0.866025 ä
-0.5 - 0.866025 ä 0. 0.

0. 1. 0.

ö÷÷÷÷÷÷
ø

{ket[q1],bra[q1]}

The next step is to look attwo systems.

In[39]:= qInit [2, 3]

If two List []s are passed toW, then the first list will be interpreted as the momen-
tum coordinates and the second list as the position coordinates. This agrees with the
convention offunction coordinates.

In[40]:= W[{0, 0},{1, 2}]

Out[40]=

æççççççççççççççççççççççççççççç
è

0. 0. 0. 0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 0. 0. 0. 1.

0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 1. 0. 0. 0. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0. 0. 0. 0.

1. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 0. 0. 1. 0. 0. 0.

0. 0. 0. 1. 0. 0. 0. 0. 0.

ö÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷
ø

{ket[q1],ket[q2],bra[q1],bra[q2]}

Alternatively, if the argument is a singleList [], then it will be treated as specifying
system coordinates.

In[41]:= W[{0, 1, 0, 2}]

Out[41]=

æççççççççççççççççççççççççççççç
è

0. 0. 0. 0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 0. 0. 0. 1.

0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 1. 0. 0. 0. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0. 0. 0. 0.

1. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 0. 0. 1. 0. 0. 0.

0. 0. 0. 1. 0. 0. 0. 0. 0.

ö÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷
ø

{ket[q1],ket[q2],bra[q1],bra[q2]}

Let us test the implementation using two random vectors.

In[42]:= m1= Table [Random[Integer , d],{i , 2n}]

m2= Table [Random[Integer , d],{i , 2n}]
Out[42]= {1,3,3,2}

Out[42]= {1,3,1,2}

Their symplectic inner product can be computed as

In[43]:= symp[m1, m2]

Out[43]= 4

Therefore, the following line tests whether the Weyl operators fulfill the composition
law of the Heisenberg group.

In[44]:= W[m1] * *W[m2] == Χ[inv symp [m1, m2]]W[m1+m2]

Out[44]= True
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The second argument tellsqInit which field to use. If it is an integerp, the package
assumes thatp is a prime and uses the fieldGF[p] (see theMathematicadocumenta-
tion). Else, one can supply a list{p, r }. In that case, the extension fieldGF[{p, r }]
is used.

In[45]:= qInit [2,{3, 2}]

In[46]:= F

Out[46]= GF[3,{2,1,1}]

In[47]:= X[1, 1]

Out[47]=

æççççççççççççççççççççççççççççç
è

0. 0. 1. 0. 0. 0. 0. 0. 0.

1. 0. 0. 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 1. 0. 0. 0.

0. 0. 0. 1. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 1.

0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 0. 0. 1. 0.

ö÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷
ø

{ket[q1],bra[q1]}

In order to increase the performance, the Weyl operators arecached. That means, the
first call toW[] computes the matrix and stores the result for subsequent use. There-
fore, if one works in large dimensions, the first call toW[]might take notablely longer
then later ones.

In[48]:= qInit [2, 13]

In[49]:= Timing [W[{1, 1},{1, 1}];]

Out[49]= {0.18 Second,Null}

In[50]:= Timing [W[{1, 1},{1, 1}];]

Out[50]= {0.06 Second,Null}

4.5 The Role of the Symplectic Group

This section is devoted to the study of the automorphisms of the Heisenberg group. In
the following, we write elements ofHn(F) as(a, t) for a ∈ V .

Lemma 1 Let α be an automorphism ofHn(F) for some finite fieldF. Thenα is of
the form

α(a, t) = (A(a), T (a, t))

for two functionsA : F → F andT : F × F → F. Further,A andT are compatible
with addition inF, that is,

A(a+ b) = A(a) +B(a)

T (a+ b, t) = T (a, t) + T (b, t)

T (a, s+ t) = T (a, s) + T (a, t).
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Proof. First, note that any automorphism maps the center of a group to the center. The
centerZ(Hn(F)) of the Heisenberg group is the set

{(0, t)}t∈F

as can be seen easily from Eq. (27). Thus

α(0, t) = (0, T (0, t)).

It is obvious that functionsA andT exist such that

α(a, t) = (A(a, t), T (a, t)).

But, using the remarks above, we find that

(A(a, t), T (a, t)) = α(a, t)

= α ((a, 0) ◦ (0, t))

= α ((a, 0)) ◦ α ((0, t))

= (A(a, 0), T (a, 0)) ◦ (0, T (0, t))

= (A(a, 0), T (a, 0) + T (0, t))

which shows that
A(a, t) = A(a, 0)

proving the first claim of the lemma. To see that the second assertion holds, write

α ((a, 0) ◦ (b, 0)) = (A(a), t1) ◦ (A(b), t2)

= (A(a) +A(b), t3)

where theti are some unimportant phases. Simultaneously, it is true that

α ((a, 0) ◦ (b, 0)) = α(a+ b, t4)

= (A(a+ b), t5).

Comparing the last lines of the preceding two formulas, one sees that

A(a+ b) = A(a) +A(b).

Turning toT , we already know thatT (a, b) = T (a, 0) + T (0, b) so it suffices to show
the compatibility ofT (·, 0) andT (0, ·) with addition inF, which is done along similar
lines as forA.

Note thatA(a + b) = A(a) + A(b) is in general not sufficient to conclude thatA is
F-linear, becauseA might fail to be compatible withscalar multiplicationby elements
λ of F : A(λa) 6= λA(a). However, if the fieldF is cyclic, that is, if every elementλ
can be written as

λ = 1 + · · · + 1 (42)

then

A(λa) = A((1 + · · · + 1)a) (43)

= A(a+ · · · + a)

= A(a) + · · · +A(a)

= λA(a)
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and linearity ofA follows. By Remark 5 in Section 3.1, a field is cyclic if and only if it
is of prime order. For the sake of simplicity, we will now restrict our attention to cyclic
fields. We’ll comment on the general case in Section 7.6.

There are a couple of automorphism groups ofHn(F) which can be identified by in-
spection. We list three of them, slightly adapting an enumeration from Ref. [13] to the
finite case.

1. LetS ∈ Sp(V ) be asymplectic map. Then

(a, t) 7→ (Sa, t) (44)

is an automorphism ofH . Denote the group of all automorphisms of this form
byG1.

2. G2 denotes theinner morphismthat is, mappings of the form

(a, t) · (a, t)−1. (45)

3. The group ofdilationsδ(r), r ∈ F
♯ with composition lawδ(r)δ(s) = δ(rs) is

defined to act onHn(F) by

δ(r)(a, t) = (a, rt). (46)

F
♯ is the set of non-zero elements inF. Dilations can be checked to be automor-

phisms and are jointly denoted byG3.

Theorem 2 ([13]) Any automorphismα ofHn(F), for cyclicF, can be written as

α = α1α2α3

whereαi ∈ Gi.

Proof. Using Lemma 1 the proof of Theorem 1.22 in Ref. [13] can easilybe adapted
to the finite case.

It is now natural to ask which of the automorphisms can be represented by the action
of unitaries on the Weyl representation. That is, for which subset of the automorphism
group exist unitary operatorsU(α) such that

Uw(a, t)U † = w ◦ α(a, t) (47)

or, weaker, if we allow for a ’projective action’, for whichα can

Uw(a, t)U † = eiφaw ◦ α(a, t) (48)

be fulfilled?

Firstly, since the center of the Heisenberg group is mapped to multiples of the identity
operator

w(0, t) = χ(t)1 (49)
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the center must be pointwise invariant under the action of unitaries by conjugation. It
follows thatG3 cannot be implemented within the framework of the Weyl representa-
tion.2 Hence, all admissibleαs must be elements ofG1G2. Now,G2, has an obvious
operator representation: the conjugation by elements ofHn corresponds of course to
conjugation by Weyl operators. The case ofG1 is not as easily decided. In the case
F = R, the statement that all symplectic mappings have an operator representation
acting on the Weyl group is the famous Stone-von Neumann-Theorem. For finiteF

explicit constructions for a mappingµ : Sp(V ) → U(H) are known such that

µ(S)w(a, t)µ(S)† = eiφaw(Sa, t). (50)

Refer to Ref. [12] for the case of odd characteristic and to Ref. [20] for fields of
characteristic two. The mappingµ which turns out to be a projective representation3 of
Sp is sometimes called themetaplectic representation.

For the rest of the Section we will pursue the question of whatcan be said about the
phaseseiφa that appear in Eq. (48).

The composition law of the Weyl representation is of the form

w(a)w(b) = f(a, b)w(a+ b) (51)

for a, b ∈ F and a functionf : F × F → C. In the language of group extension theory,
the functionf is a factor system. The explicit form off is given by the formulas (27)
and (39) for non-binary and binary systems respectively.

Now let U be any unitary operator that maps Weyl operators to multiples of Weyl
operators under conjugation:

Uw(a, t)U † = eiφaw(Sa). (52)

In the context of quantum information theory, such operators are calledClifford opera-
tions. Because conjugation by unitary operators preserves the multiplicative structure,
S must be an automorphism of the Heisenberg group. Because it fixes the center,S is
symplectic by Theorem 2.

Definec(a) := eiφa . We have on the one hand

Uw(a)U †Uw(b)U † = w(Sa)w(Sb)c(a)c(b) (53)

= f(Sa, Sb)w(S(a+ b))c(a)c(b)

and on the other hand

Uw(a)U †Uw(b)U † = Uw(a)w(b)U † (54)

= f(a, b)Uw(a+ b)U †

= f(a, b)w(S(a+ b))c(a+ b),

which together yields

f(Sa, Sb)

f(a, b)
=
c(a+ b)

c(a)c(b)
. (55)

2However, if one allows foranti-unitaryoperators, thenδ(−1) can be represented [34].
3In the case of finite fields of odd order,µ can be chosen to be a non-projective representation [12]. This

fact will however not play a role in this document.
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For every symplectic mappingS, the condition (55) determinesc modulo a character
of V . Indeed, letU andV be unitaries such that

Uw(a)U † = cU (a)w(Sa) (56)

V w(a)V † = cV (a)w(Sa).

Define a ’difference function’δ by cV (·) =: cU (·)δ(·), then

cV (a+ b)

cV (a)cV (b)
=
f(Sa, Sb)

f(a, b)
=

cU (a+ b)

cU (a)cU (b)
. (57)

⇒ cV (a+ b)

cV (a)cV (b)
=

cV (a+ b)δ(a+ b)

cV (a)cV (b)δ(a)δ(b)

⇔ δ(a+ b)

δ(a)δ(b)
= 1.

Looking again at Eq. (55) we see that the phasesc deviate from being a character ofV
if and only if the factor setf fails to be invariant under symplectic operations.

If F is not of characteristic two, then

f(a, b) = χ(−2−1[a, b]) (58)

and thusf(a, b) = f(Sa, Sb) becauseS is symplectic. We conclude thatc must be a
character ofV . But then there is a vectorv ∈ V such that

c(·) = χ([v, ·]). (59)

DefineV := Uw(−v). It holds that

V w(a)V † = Uw(−v)w(a)w(−v)†U † (60)

= c(a)∗Uw(a)U †

= w(Sa)

for all a ∈ V . We conclude that the mappingµ : Sp(V ) → U(H) can be chosen
such that Eq. (47) is fulfilled, that is, no phase factorsc appear. The discussion of the
unitary automorphisms of the Weyl operators for non-binarysystems will be continued
in Section 7.2.

For qbits however, the factor system cleary fails to be invariant under the action of
symplectic mappingsS as can be seen from Eq. (39). All that can easily be established
about the phasesc(·) is that they must be real, for binary Weyl opeators are hermitian
and conjugation by unitary operators preserves hermiticity. So, by use of Eq. (55) we
have in general

c(a+ b)

c(a)c(b)
= ±1. (61)

There is thus no canonic way of choosingµ(S) as was the case for non-binary systems,
where a specific representationµ(S) was singled out by the property that it allowed for
a trivial c(·).
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4.5.1 Computer Implementation

In[51]:= << head .m

<< qmatrixHead .m

<< heisenberg .m

package qmatrix, version 2.2.1

(C) Timo Felbinger (timo@felbinger.net), 1999, 2000, 2001

last modified : 20010430.210546utc by : timof@amadeus

This package is free software and you are welcome to

redistribute it; type qmatrix‘license for the details.

Type qmatrix‘help to get help on this package.

In[52]:= qInit [1, 3]

Define any symplectic2x2 -matrix.

In[53]:= (S = {{2, 1},{1, 1}}) // MatrixForm

Out[53]= I2 1
1 1

M

mu[] returns the metaplectic representation of its argument. However, it works only
for single systems. It is based on a formula by Vourdas.

In[54]:= B = Μ[S]

Out[54]=

æçççççç
è

0. - 0.57735 ä -0.5 + 0.288675 ä -0.5 + 0.288675 ä
0.5 + 0.288675 ä -0.5 + 0.288675 ä 0.5 + 0.288675 ä
0.5 + 0.288675 ä 0.5 + 0.288675 ä -0.5 + 0.288675 ä

ö÷÷÷÷÷÷
ø

{ket[q1],bra[q1]}

Test the representation.

In[55]:= Μ[S] * *W[{1, 0}] * *hc[Μ[S]] == W[S.{1, 0}]

Out[55]= True
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5 Non-Binary Stabilizer Codes

We now consider the image of entire subspacesM of F
2n
d under the Weyl represen-

tation. The setw(M) consists ofddim M operators, which commute mutualy ifM is
isotropic. In that case,w↾M is a representation ofM viewed as an abelian group. As a
consequence of Schur’s lemma, this representation decomposes the Hilbert space into
an orthogonal sum of one-dimensional subspaces, each invariant underw↾m. Indeed,
w acts on each of these subspaces as acharacterof M . If k denotes the dimension of
M , it can be shown, that thedk characters ofM occur with equal multiplicity [19] in
the decomposition ofw↾M and thus each character is connected to a2d−k-dimensional
subspace of the Hilbert spaceH.

The space defined in this way by an isotropic subspaceM and a characterχ : M → S1

is thestabilizer codeassociated toM andχ. The projection operator onto this space
will be denoted asρ(M,χ). In the special case thatM is maximal isotropic, the code
becomes one-dimensional and hence singles out a ray in Hilbert space. Modulo phases,
this ray corresponds to a state vector which we refer to as|M,χ〉. We writeρ(M)
shorthand forρ(M,1) where1 is the trivial character, sending all elements ofM to 1.

An isotropic subspace can be specified by a basis{m1, · · · ,mk}. The character in turn
is fixed, once we know its values{χ(m1), · · · , χ(mk)} on the base vectors. The base
vectors can be gathered together as thecolumnsof a matrix, which is called thegener-
ator matrixof M (this is because the images of the base vectors underw generatethe
stabilizer group). We denote the generator matrix of a subspace with the correspond-
ing calligraphic letter. Note that we are still using systemcoordinates and thus, in the
generator matrix ofM ,

M =







m1,1 · · · m1,n

...
...

m2n,1 · · · m2n,n






(62)

two consecutive rows belong to one system.

GivenM,χ, the mapping
m 7→ χ∗(m)w(m) (63)

is a another faithful representation ofM in H. The set

{χ∗(m)w(m)}m∈M =: S(M,χ) (64)

is thus an abelian group, called thestabilizer groupassociated to the given data.

There is an explicit formula for the projection operator onto a stabilizer code:

ρ(M,χ) =
1

dk

∑

m∈M

χ∗(m)w(m) (65)

=
1

dk

∑

s∈S

s.

Indeed,ρ defined as above can be checked to be idempotent, self-adjoint and further,
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for m′ ∈M ,

w(m′)ρ(M,χ) = w(m′)
1

dk

∑

m∈M

χ(m)∗w(m) (66)

=
1

dk

∑

m∈M

χ(m)∗w(m+m′)

=
1

dk

∑

m∈M

χ(m−m′)∗w(m)

=
1

dk

∑

m∈M

χ(m′)χ∗(m)w(m)

= χ(m′)ρ(M,χ)

and thusw↾M acts as the multiplication operator byχ on range(ρ).

It follows that a state vector|ψ〉 belongs to the stabilizer code associated toM,χ if and
only if

χ∗(m)w(m)|ψ〉 = |ψ〉 (67)

for all m ∈ M . In other words: |ψ〉 is a common eigenvector of all elements of
the stabilizer groupS(M,χ) to the eigenvalue 1. This fact is sometimes taken as the
definition of stabilizer codes [26].

It is easy to see that for all charactersχ, ξ of M , there is a Weyl operator map-
ping ρ(M,χ) to ρ(M, ξ) under conjugation. Since the Weyl operators are local (see
Eq. (34)) any two stabilizer codes belonging to the same isotropic subspace are local
Clifford-equivalent.

5.1 Qbit Stabilizer Codes

In the non-binary case,w(M) provided a faithful representation of an isotropic vec-
tor spaceM . For two-level systems, things are more complicated because the binary
composition law (Eq. (39)) introduces phase factors even when twocommutingWeyl
operators are composed. This will causew(M) to be closed under composition only
modulo phases. However, once a basis has been choosen withinM , these phases can
be fixed by the following construction. Let{mi}i be a basis of an isotropic spaceM .
ChoosedimM numbersχ(mi) ∈ {+1,−1}. Every elementm ∈ M has a unique
decomposition

m =
∑

cimi. (68)

The operator
S(m) :=

∏

ciχ(mi)w(mi) (69)

is well-defined, because thew(mi) commute (forM is isotropic). Thus the stabilizer
group associated to the set{M, {mi}i, χ} can be defined as

S(M, {mi}, χ) := {S(m)|m ∈M} (70)

and the corresponding stabilizer codeρ(M, {mi} , χ) is the the set of common eigen-
vectors of the operatorsS(M, {mi}, χ) to the eigenvalue 1.
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For the sake of simplicity, we defineS(M) to beS(M, {mi},1), where the vectorsmi

are the columns of the generator matrixM. Thusρ(M) is well-defined in the binary
case whereelseρ(M) is not.

For subsequent use, define the functions(m) implicitely by the relation

S(m) = s(m)χ(m)w(m). (71)
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6 The Characteristic Function

6.1 The Integrated Representation

The Schrödinger representatin of the Heisenberg group induces a representation of the
convolution algebraL1(H

n) as in Eq. (20)

L1(H
n) ∋ f 7→ w(f) :=

∑

p,q,t

f(p, q, t)w(p, q, t). (74)

Following Ref. [13], we callw(f) theIntegrated representation.

The Integrated representation is not faithful. Indeed, only one Fourier component of
f(p, q, t) with respect tot contributes to the operatorw(f).

Proof. [13] We writeF3 for the Fourier transformation operator with respect to the
third argument of a function. Further, letχ be the character used in the definition of
the Schrödinger representation, that is, letχ be such that

w(p, q, t) = w(p, q)〈χ|t〉.

Definingf̂ = F3f and inserting the identity

f(p, q, t) = (F−1
3 f̂)(p, q, t)

=
1√
d

∑

ζ

f̂(p, q, ζ)〈t|ζ〉

into the definition of the integrated representation, we seethat

w(f) =
∑

p,q,t

1√
d

∑

ζ

f̂(p, q, ζ)〈t|ζ〉w(p, q)〈χ|t〉

=
∑

p,q

∑

ζ

f̂(p, q, ζ)d−1/2
∑

t

〈ζ|t〉〈χ|t〉

=
∑

p,q

∑

ζ

f̂(p, q, ζ)d1/2δζ,χ∗

=
√
d
∑

p,q

f̂(p, q, χ∗),

which proves the assertion.

Given a functionF on F
2n, we can lift it to a function on the Heisenberg group by

setting
(l ◦ F )(p, q, t) := φ(p, q)χ∗(t)d−1/2. (75)

The integrated representation now naturally extends to phase space functions onF2n

as

w(F ) := w(l ◦ φ) (76)

=
∑

p,q

F (p, q)w(p, q)

where the last identity can easily be checked.
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Recall, that in Eq. (20) we have seeen that the Integrated representation is compatible
with convolution in the sense that

w(f ∗ g) = w(f)w(g) (77)

for f, g ∈ L1(H
n). It is now natural to ask how the lifting procedure introduced in the

last paragraph fits into this framework. To this end, letF,G be phase space functions.
Then

(lF ) ∗ (lG)(p, q, t) (78)

=
1

d

∑

p′,q′,t′

F (p′, q′)χ∗(t′)G(p− p′, q − q′)χ∗(t− t′ − 2−1(−2−1(p′q − q′p))

=
1

d

∑

t′

χ∗(t′ − t′)χ∗(t)
∑

p′,q′

F (p′, q′)G(p− p′, q − q′)χ∗(−2−1(p′q − q′p))

= χ∗(t)
∑

p′,q′

F (p′, q′)G(p− p′, q − q′)χ∗(2−1(pq′ − qp′))

=: l(F ♮G),

where we have defined thetwisted convolution[13]

(F ♮G)(p, q) =
∑

p′,q′

F (p′, q′)G(p− p′, q − q′)χ∗(2−1(pq′ − qp′)). (79)

Comparison with Eq. (77) shows that

w(F ♮G) = w(F )w(G) (80)

for phase space functionsF andG.

The following diagram symbolizes these relations.

〈F,G〉 ♮ - F ♮G

〈lF, lG〉

l

? ∗- lF ∗ lG

l

?

〈w(F ), w(G)〉

w

? ·- w(F )w(G)

w

?

6.2 Inverting the Integrated Representation: The Characteristic
Function

The Integrated Representation associates an operator to a complex function on the vec-
tor spaceF2n. This mapping is one-to-one and can easily be inverted. Making use of
the fact that

tr(w(p, q)) = dnδp,0δq,0 (81)
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and the group law (27) one finds immidiately that the Weyl operators form an orthonor-
mal basis with respect to the Hilbert-Schmidt inner product1

dn tr(·, ·). We identify the
phase space function in Eq. (76) as the expansion coefficients with respect to this basis
(modulo normalization). The relation

F (p, q) =
1

dn
tr(w(p, q)†w(F )) (82)

follows.

The phase space functionF is called thecharacteristic functionof the operatorw(F ).
Because the Weyl operators form an orthonormal basis, any operator has a characteris-
tic function which we will denote by

Ξ(A)(p, q) = ΞA(p, q) =
1

dn
tr(w(p, q)†A) (83)

for a general operator A.

〈F,G〉 ♮ - F ♮G

〈w(F ), w(G)〉

w

?

c

6

·- w(F )w(G)

Ξ

6

w

?

We list some properties of the characteristic function.

1. (Symplectic Covariance)Using the results from Section 4.5 one immediately
gets

Ξµ(S)A µ(S)†(a) =
1

dn
tr
(

w(a)†µ(S)Aµ(S)†
)

=
1

dn
tr
(

µ(S)†w(a)†µ(S)A
)

=
1

dn
tr
(

w(S−1a)†A
)

cS−1(a)

= ΞA(S−1a)cS−1(a),

wherecS−1(a) equals1 in the case of non-binary system and is else given by
Eq. (55). It is hence justified to call the characteristic function symplectically
covariant.

2. (Translations)With the help of Eq. (29), we see that

Ξw(b)Aw(b)†(a) =
1

dn
tr
(

w(a)†w(b)Aw(b)†
)

=
1

dn
tr
(

w(b)†w(a)†w(b)A
)

=
1

dn
χ([a, b])∗ tr

(

w(a)†A
)

= χ([a, b])∗ ΞA(a).

Thus conjugation by Weyl operators corresponds to multiplying the characteris-
tic function by acharacter.
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3. (Adjoint Operators)

ΞA†(a) =
1

dn
tr(w(a)†A†)

=
1

dn
tr(Aw(a))∗

=
1

dn
tr(w(−a)†A)∗

= ΞA(−a)∗.

Observe, that the matrix elements ofA fullfil the same relation.

4. (Trace)

tr(A) = tr

(

∑

a

ΞA(a)w(a)

)

=
∑

a

ΞA(a) trw(a)

= dnΞA(0)

5. (Hilbert-Schmidt scalar product)

1

dn
tr(A†B) = (ΞA† ♮ΞB) (0)

=
∑

a

ΞA†(a)ΞB(0 − a)χ∗([a, 0])

=
∑

a

Ξ∗
A(−a)ΞB(−a)

=
∑

a

Ξ∗
A(a)ΞB(a)

=: ΞA.ΞB

where in the last line, we have defined ascalar productfor complex phase space
functions

ΞA.ΞB =
∑

a

Ξ∗
A(a)ΞB(a). (84)

6. (State Vectors)Let |ψ〉 be a state vector inH with coefficients〈x|ψ〉 = ψ(x).
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Then

Ξ(|ψ〉〈ψ|)(p, q) =
1

dn
tr(w(−p,−q)|ψ〉〈ψ|) (85)

=
1

dn
tr(w(−p,−q)|ψ〉〈ψ|)

=
1

dn
〈ψ|w(−p,−q)|ψ〉

=
1

dn

∑

x∈Fn

ψ(x)∗χ(−2−1pq)χ(px)ψ(x − q)

=
1

dn

∑

y|x=y+2−1q

χ(−2−1pq + p(y + 2−1q))

ψ(y + 2−1q)∗ψ(y + (2−1 − 1)q)

=
1

dn

∑

y

χ(py)ψ(y + 2−1q)∗ψ(y − 2−1q)

where we have used the fact that

(2−1 − 1)(−2) = −1 + 2 = 1. (86)

and hence2−1 − 1 = (−2)−1.

6.3 Computer Implementation

In[56]:= << head .m

<< qmatrixHead .m

<< heisenberg .m

In[57]:= qInit [1, 3]

Define some operator.

In[58]:= w1 =W[{1, 1}] + 0.75 W[{0, 1}]

Out[58]=
K 0. 0. 0.25 + 0.866025 ä
0.25 - 0.866025 ä 0. 0.

0. 1.75 0.

O
{ket[q1],bra[q1]}

characteristic [] computes its characteristic function.

In[59]:= (c1 = characteristic [w1] ) // MatrixForm

Out[59]= K0 0.75 0
0 1. 0
0 0 0

O

Take any second operator, for example a projection operator.

In[60]:= Ψ = matrix [{1, 0, 0},{ket [q1]}]

Out[60]=
K1.

0.

0.

O
{ket[q1]}

In[61]:= w2 = Ψ * *hc[Ψ]
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Out[61]=
K1. 0. 0.

0. 0. 0.

0. 0. 0.

O
{ket[q1],bra[q1]}

In[62]:= (c2 = characteristicSave [w2] )//MatrixForm

Out[62]= K
1

3
0 0

0.333333 0 0
0.333333 0 0

O

Thetwisted convolutionof the two characteristic functions can be computed. It should
be compatible with operator composition.

In[63]:= twist [c1, c2] == characteristic [w1* *w2]

Out[63]= True
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7 The Wigner-Transformation

7.1 Definition

We define the Wigner function of an hermitian operatorA to be the symplectic Fourier
transform of its characteristic function:

W := F̃ ◦ Ξ. (87)

Conversely, by inverting Eq. (87), one can associate an operator to a phase space
function:

Ω := W−1 = Ξ−1 ◦ F̃−1 = w ◦ F̃ . (88)

In the continuous case, the preceding relation is known as the Weyl correspondance
[13].

F̃
w -�
Ξ

w(F̃ )

I@
@

@
@

@
F̃

R 	�
�

�
�

�
W

�
�

�
�

�

Ω

�

F

Let us explore the consequences of the definitions. Considerthe caseH = Cnd, d =
pr, V = F

2n
d . For the Wigner function we have for alla ∈ V

WA(a) = W (A)(a) (89)

= F̃ ΞA(a)

=
1

d2n

∑

b∈V

χ([a, b])∗ tr(w(b)†A)

=
1

dn
tr

(

(
1

dn

∑

b∈V

χ([a, b])∗w(b)†)A

)

.

The above function leads naturally to the definition of thephase space point operators
(see Ref. [9])

A(a) :=
1

dn

∑

b∈V

χ([a, b])∗w(b)†. (90)

We establish some properties of the phase space point operators.

1. Phase space point operators are hermitian.

A†(a) =
1

dn

∑

b

χ([a, b])w(b)

=
1

dn

∑

b

χ([a,−b])∗w(−b)

=
1

dn

∑

b

χ([a, b])∗w(b)

= A(a),
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where the line next to the last one is justified since the sum ranges over a vector
space.

2. Phase space point operators have unit trace.

trA(a) =
1

dn
tr

(

∑

b

χ([a, b])∗w(b)

)

=
1

dn

∑

b

χ([a, b])∗ trw(b)

=
1

dn
dn

= 1

3. Phase space point operators form an orthonormal basis with respect to the Hilbert-
Schmidt inner product.

1

dn
tr(A†(a)A(b)) =

1

dn
tr(A(a)A(b))

=
1

d3n

∑

c,d

χ([a, c])∗χ([b, d])∗ tr(w(c)w(d))

=
1

d2n

∑

c,d

χ([a, c])∗χ([b, d])∗δc,−d

=
1

d2n

∑

c

χ([a, c])∗χ([b, c])

=
1

d2n
d2nδa,b

= δa,b

4. The sum over all phase space point operators is a multiple of the unity.

∑

a

A(a) =
1

dn

∑

a

∑

b

χ([a, b])w(b)

=
1

dn

∑

b

(

∑

a

χ([a, b])

)

w(b)

=
1

dn

∑

b

d2nδb,0w(b)

= dnw(0)

= dn1.
7.2 Properties

From the properties of the phase space point operators, we can derive immediately
an interpretation of the Wigner function of an operator: it gives the expansion coeffi-
cients of that operator in terms of the orthogonal basis of phase space point operators.
Because the latter are hermitian, the Wigner function of a hermitian operator is real.
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Further properties:

1. (Symplectic Covariance)Using the symplectic covariance of the symplectic Fou-
rier transformation (24) and of the characteristic function (84), we get for the
case of non-binary systems

Wµ(S)Bµ(S)†(a) = (F̃Ξµ(S)Bµ(S)†)(a) (91)

= (F̃ΞB)(S−1a).

= WB(S−1a).

In the qbit case, the phasescµ(S) are in general non-trivial. Here, the Wigner
function looses its covariance under Clifford operations.

If, in the qbit case, the phasescµ(S) are non-trivial, the Wigner function looses
its covariance under Clifford operations.

2. (Translational Covariance)The Wigner function is also covariant under phase
space shifts:

Ww(b)Bw(b)†(a) =
(

F̃(χ([·, b])∗ ΞB(·))
)

(a) (92)

=
(

F̃ ΞB

)

(a− b),

= WB(a− b),

where we have made use of Eq. (25).

3. (Trace)

tr(B) = tr

(

∑

a

WB(a)A(a)

)

(93)

=
∑

a

WB(a) tr(A)

=
∑

a

WB(a)

4. (Hilbert-Schmidt scalar product)LetB andC be hermitian.

1

dn
tr(BC) =

1

dn
tr
∑

b

WB(b)A(b)
∑

c

WC(c)A(c) (94)

=
∑

b,c

WB(b)WC(c)
1

dn
tr(A(b)A(c))

=
∑

b,c

WB(b)WC(c)δb,c

=
∑

b

WB(b)WC(b)

=: WB.WC .

The last line uses the phase space scalar product defined in Eq. (84). Note the
difference in normalization as compared to the standard physicists’ convention
for computing expectation values.
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We can now analyze to covariance properties of the Wigner function. To this end,
consider an affine transformation onV :

v 7→ Av + a (95)

for someA ∈ GL(V ) anda ∈ V . We denote the set of elements ofAff(V ) whose
’linear part’A is symplectic bySpAff(V ). SpAff can be checked to be a subgroup
of Aff, or, if one wishes, to be asemi-direct productof Sp(V ) andV . We define a
mapping fromSpAff(V ) toU(H) by

A · + a 7→ w(a)µ(A). (96)

No confusion should arise by denoting the above map byµ as well. Note, that this
designation is compatible with the special casea = 0. Now,

(A · + a) ◦ (B · + b) = A(B · + b) + a (97)

= AB · +(Ab+ a)

while

(w(a)µ(A)) (w(b)µ(B)) = w(a)µ(A)w(b)µ(B) (98)

= w(a)µ(A)w(b)µ(A)†µ(A)µ(B)

= w(a)w(Ab)µ(A)µ(B)

∝ w(Ab + a)µ(AB)

and thereforeµ is a projective representation ofSpAff(V ). The group generated by
the image ofµ is sometimes referred to as theJacobi group[21]. Combining the
symplectic and the translational covariance of the Wigner function, we see that if

B′ := µ(A · + a)B µ(A · + a)† (99)

then

WB′(v) = WB(A−1v −A−1a). (100)

⇔ WB′(Av + a) = WB(v).

It is in this sense that the Wigner function is covariant under the action of the affine
group ofV .

7.3 Wigner Functions of Stabilizer Codes

Recall from Section 5 that a projection operator onto a stabilizer code associated with
the isotropic spaceM and the characterζ can be obtained by the sum

ρ(M,χ) =
1

dk

∑

m∈M

ζ∗(m)w(m). (101)

Becausev 7→ χ([v, ·]) is an isomorphism into the character group ofF, there always is
av ∈ V such that

ζ(·) = χ([v, ·]) (102)
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for any given characterζ. Now, obviously,

χ([v,m]) = χ([v′,m]) (103)

for all m ∈ M if and only if v′ − v lies in the symplectic complementM⊥ of M .
Hence, there is a one-one correspondence between characters ofM and

V/M⊥. (104)

BecauseM⊥ is a vector space, the quotient above is anaffine space. In the special case
thatM is maximally isotropic,M⊥ = M and

V/M⊥ = V/M. (105)

We see that instead of using the data{M, ζ}, we can specify a stabilizer code by
{M, v}, wherev is an element ofV/M⊥. In that sense, stabilizer codes can be thought
of as affine spaces with directional vector spaceM and base pointv. The Wigner
function representation of stabilizer states turns out to be compatible with that point of
view. Indeed, we see that

Ξρ(M,v)(a) =
1

dn+k

∑

m∈M

χ([m, v])∗ tr(w(−a)w(m)) (106)

=
1

dk
χ([a, v])∗δM (a),

whereδM is theindicator functionof M defined to be

δM (v) =

{

1 v ∈M
0 else

. (107)

Further,

(F̃ δM )(a) =
1

dn

∑

m∈M

χ([a,m])∗ (108)

=
1

dn
|M |δM⊥(a)

= δM⊥(a).

Hence, making use of the results of Section 3.4.1,

Wρ(M,v) =
1

dk
δM⊥+v (109)

and in the special case of stabilizerstates,

Wρ(M,v) =
1

dn
δM+v. (110)

7.4 Marginal Probabilities

We shortly comment on how the above results on stabilizer codes can be used to de-
scribe the computation ofmarginal probabilitiesin phase space. For a more detailed
presentation of the topic and how it relates toquantum state tomography, see Ref. [9].
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In the casen = 1 of a single system, the Wigner function of a stabilizer stateis the
indicator function of a one dimensional affine space, that is, it is a line in phase space.
Now consider the Wigner functionWσ of some density matrixσ and letλ be some line
in phase space. Using Eq. (94) and Eq. (110), it is clear that

∑

a∈λ

Wσ(a) = tr(σρ(λ)) (111)

whereρ(λ) is the stabilizer state associated to (the affine space)λ in the sense of the
last section.

As a particular example, look at the lines parallel to the momentum axis, displaced
from the origin by the offsetq

λq :=

{(

p
0

)

+

(

0
q

)

|p ∈ F

}

. (112)

It is easy to see that
ρ(λq) = |q〉〈q| (113)

and thus, the sum of the values of a Wigner functionWσ over the points of the line
λq is the expectation value of|q〉〈q| with respect to the stateσ. The same procedure
can be repeated for any set of parallel lines in phase space – forming a perfect analogy
to the computation ofmarginal probabilitiesof a classical probability distribution on
phase space.

7.5 Computer Implementation

In[64]:= << head .m

<< qmatrixHead .m

<< heisenberg .m

<< someStates .m

In[65]:= qInit [1, 3]

Let us look at a computational basis state (or ’position’ eigenstate, if one wishes) in
dimension three.

In[66]:= Ψ = posEigenstate [1, 1];

In[67]:= Chop@posEigenstate [1, 1] // toAbstract

Out[67]= 1. |0 >

wigner []computes the Wigner function of a given state vector or operator.

In[68]:= wigner [Ψ * *hc[Ψ]] // MatrixForm

Out[68]=
æçççççç
è

0.333333 0 0
0.333333 0 0
0.333333 0 0

ö÷÷÷÷÷÷
ø

However, most of the times we are interested in a visual representation. The func-
tion Visualize []is a powerful wrapper for several visualization methods. We’ll
comment on it soon.
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In[69]:= Visualize [Ψ]

1
2

3

1

2
3

0

0.1

0.2

0.3

1
2

3

1

2
3

Out[69]= -Graphics3D-

The functionA[] returns a phase space point operator. The first argument specifies the
system it acts on, the second argument the phase space point it belongs to.

In[70]:= A[1, 0, 0]

Out[70]=

æçççççç
è

1. 0. 0.

0. 0. 1.

0. 1. 0.

ö÷÷÷÷÷÷
ø

{ket[q1],bra[q1]}

The following definition is taken fromheisenberg .m. It shows how to use the
Fourier transformation function on operators.

In[71]:= A[i_ ,Ξ_, x_] := A[i ,Ξ, x ] = SFT[W[i , #1, #2]&][Ξ, x];

A phase space point operator’s Wigner function is sharply concentrated in both position
and momentum space.

In[72]:= Visualize [A[0, 0]]

1
2

3

1
2

3

0

0.25

0.5

0.75

1

1
2

3

1
2

3
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Out[72]= -Graphics3D-

However it does not represent a physical state because it is not a positive operator.

In[73]:= eigenvalues@A [1, 0, 0]

Out[73]= {-1.,1.,1.}

The wrapperVisualize [] comes with several options.

In[74]:= Options [Visualize ]

Out[74]= {Style ® BarChart,Centered ® True,SymbolMethod ® wigner,ImageSize ®
200}

If we turn of the centering option, then the origin of the phase space will be placed at
the lower left corner.

In[75]:= Visualize [A[0, 0], Centered ® False ]

1
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3

1
2

3

0

0.25

0.5

0.75

1

1
2

3

1
2

3

Out[75]= -Graphics3D-

For more complex situations, the bar graphs are hard to interpret. A ’flat’ representation
turns out to be more advantageous.

In[76]:= Visualize [A[0, 0], Style ® Density ]
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Out[76]= -DensityGraphics-

Visualize [] is not limited to Wigner functions. Any function that turns an operator
into a 2-D matrix can be specified as an argument to theSymbolMethod option.

In[77]:= Visualize [A[1, 0], SymbolMethod ® (Chop@Re[characteristic [#]]&)]
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Out[77]= -Graphics3D-

If one wants to look at many transforms simultaneously, thenDrawArray [] offers
some space savings.

In[78]:= DrawArray [A[0, 0], W[{1, 1}] * *A[0, 0] * *hc[W[{1, 1}]]]
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Let us check the covariance properties under the action of the Jacobi group.

In[79]:= (S = {{1, 1},{1, 0}}) // MatrixForm

Out[79]= J1 1
1 0

N
In[80]:= DrawArray [Ψ,Μ[S] * *Ψ, W[{0, 1}] * *Ψ, W[{0, 1}] * *Μ[S] * *Ψ, 2]
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In[81]:= qInit [2, 3]

Here is an example of a two-particle system.

In[82]:= Psi = posEigenstate [1, 1]**posEigenstate [2, 1]+posEigenstate [1, 2]*
*posEigenstate [2, 2] + posEigenstate [1, 3] * *posEigenstate [2, 3];

In[83]:= Chop@Psi //toAbstract

Out[83]= 1. |00 > +1. |11 > +1. |22 >

In[84]:= WignerDraw [Psi ]
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Out[84]= -Graphics3D-
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The 4-D phase space is flattened out using a ’first-system major, second system minor’
approach as will be exemplified below.

In[85]:= SetOptions [Visualize , Style ® Density ];

In[86]:= DrawArray [A[1, 0, 0] * *W[2, 0, 0], W[1, 0, 0] * *A[2, 0, 0]]
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In[87]:= DrawArray [A[1, 0, 0]**A[2, 0, 0], A[1, 0, 1]**A[2, 0, 0], A[1, 0, 0]**A[2, 0, 1]]
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Consider, for example, the (vertical) position axis. It hasnine points where three con-
secutive points correspond to a fixed value of the position coordinates of the first sys-
tem.

7.6 The Case of Extension Fields

Let us take a look at the one-dimensional Heisenberg group onan extension fieldF =
Fpr . According to Section 3.1 it is possible to find two bases{ei}, {ej} in F which are
dual to each other in the sense that

Tr(eie
j) = δj

i . (114)

Adopting Einstein’s summation convention, we can write elementsp, q of F in terms
of these bases as

p = pie
i (115)

q = qiei (116)

where thepi and qi are elements of the base fieldFp. Further, we know that the
characterχ used in the definition of the Heisenberg group is of the form

χ(·) = ωTr a· (117)

47



for somea ∈ F. Because the traceFpr → Fp is never faithful, the Weyl representation
Eq. (31) cannot be faithful in the case of a Heisenberg group over an extension field.
It is thus natural to define thereduced Heisenberg grouph(F) asF × F × Fp with
composition law

(p, q, t)(p′, q′, t′) = (p+ p′, q + q′, t+ t′ + 2−1 Tr a

[(

p
q

)

,

(

p′

q′

)]

). (118)

The function

H(F) → h(F) (119)

(p, q, t) 7→ (p, q,Tr at)

can be checked to be a group homomorphism. Further, it is clear that the Weyl repre-
sentation is faithful onh(F).

The Weyl representation ofH(Fpr) is defined on

H = Cpr ∼= (Cp)
r (120)

with basis{|i〉}i=1···pr . We can introduce a tensor structure onH by setting

T : |q1, · · · , qr〉 7→ |qiei〉. (121)

The shift and clock operators are compatible with that structure in the sense that

x(
∑

i

qiei) =
∏

i

x(qiei) (122)

=
⊗

i

x(i)(qi)

z(
∑

i

piei) =
∏

i

z(pie
i) (123)

=
⊗

i

z(i)(pi)

where we have implicitly defined the operators

x(i)(q) := x(qei) (124)

z(i)(p) := z(pei) (125)

and the tensor notation is justified because the newly definedoperators act only on the
ith subsystem in the sense of Eq. (121) as can easily be seen.

Let us for the moment assume thata = 1. By the linearity of the trace it holds that

Tr pq = Tr
(

(pie
i)(qjej)

)

(126)

= piq
j Tr(eiej)

= piq
jδi

j

= piq
i
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and hence

χ(pq) = ωTr pq (127)

= ω
∑

i
piq

i

=
∏

i

χFp
(piq

i).

Note that we do not apply the summation convention if the index variable is bound by
some symbol, as for example by the product

∏

i in the last line.

Combining the results from the last two paragraphs, we see that

w(p, q, t) = χ(−2−1pq)z(p)x(q) (128)

=
∏

i

χ(−2−1piq
i)
⊗

i

z(i)(pi)
⊗

i

x(i)(qi)

=
⊗

i

w(i)(pi, q
i)

and hence the Weyl representationfactorswith respect to the tensor structure (121).

Going on, we compute

A(p, q) =
∑

ξ,ζ∈F

χ

([(

p
q

)

,

(

ξ
ζ

)])

w(p, q) (129)

=
∑

ξ,ζ

χ(pζ)χ(qξ)∗
⊗

i

w(i)(pi, q
i)

=
∑

ξ,ζ

∏

i

χ(piζ
i)χ(qiξi)

∗⊗

i

w(i)(pi, q
i)

=
⊗

i

∑

ξi,ζi∈Fp

χ(piζ
i)χ(qiξi)

∗w(i)(pi, q
i)

=
⊗

i

A(i)(pi, q
i)

and thus the phase space point operators factor as well.

So with the characterχ chosen the way we did (in particulara = 1), the Weyl operators
w and the phase space point operatorsA of Fpr are identical to the ones of(Fp)

r and,
in particular, inherit all transformation properties fromthe multi-dimensional case.

Let us formalize this observation. Consider the symplecticvector spaceV = F
2 over

the extension fieldF = Fpr with a symplectic basis{ep, eq}. Further, choose two field
bases{fi}, {f i} which are dual to each other. Every vectorv of V can be written as

v = vif
iep + vifieq (130)

and is thus connected to a set of2r coordinates{vi, v
i} in the base fieldFp. Therefore

the map

ι : v 7→





















v1
...
vr

v1

...
vr





















(131)
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is well-defined and mapsV to theFp-vector spaceW of 2r-dimensional column vec-
tors. The mapι is compatible with addition andFp-scalar multiplication. The vector
spaceW inherits a symplectic form via

[ι a, ι b]W := tr[a, b]V . (132)

The following statements relate the structures ofV andW .

1. ι maps subspaces ofV to subspaces ofW . Its inverse,ι−1, need not have this
property.

2. ι maps isotropic subsets ofV to isotropic subsets ofW . Again, the converse
statement does not hold in general.

3. Let SV ∈ Sp(V ) be a symplectic linear mapping inV . Then ι SV ι
−1 is an

element ofSp(W ). On the other hand, forSW ∈ Sp(W ), the mappingι SW ι−1

can fail to be linear or isotropic.

Proof.

1. LetMV be a subspace ofV and denoteιM byMW . Let ι a, ι b ∈MW , λ ∈ Fp.
Then

λι a+ ι b = ι (λa+ b) ∈MW

becauseMW is linear. A counterexample for the converse statement can easily
be constructed.

2. LetMV ⊂ V be isotropic. Forι a, ι b ∈ ιMV we have

[ι a, ι b]W = tr[a, b]V

which is zero if[a, b]V is.

3. The last statement is a consequence of the previous ones.

From a pragmatic standpoint the following question arises:given anpr dimensional
Hilbert space, is it more fruitful to associate it with a 2-dimensional phase space over
Fpr or with a 2r-dimensional one overFp? From the considerations above, the lat-
ter choice seems to be more natural since all relevant structures (subspaces, isotropic
spaces, symplectic mappings) can be mapped fromF

2
pr to F

2r
p , but not vice versa. How-

ever, certain constructions in quantum state tomography and in the theory of mutually
unbiased bases [9] rely on the geometry of a 2-dimensional vector space which is of
course more manifestly present inF

2
pr .

Note that in the section, we have addressed two questions posed by Gibbons, Hoffman
and Wootters in [9], namely the question of whether factoring phase space point opera-
tors exits in any prime-power dimension and which symmetriegroups they are subject
to.
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8 An Application: Automorphisms of SIC-POVMs

A detailed introduction to the problem of SIC-POVMs can be found in the Appendix.
The particular problem we like to address here is the following. In Ref. [32] Renes et
al. described a numerical method for finding fiducial states for SIC-POVMs which are
covariant under the Weyl representation. Zauner’s conjecture implies that these fiducial
states are eigenvectors of a Clifford operation. How can we efficiently compute the
Clifford symmetries of the fiducial states, given the numerical data?

The answer turns out to be easy if one uses the covariance properties of the Wigner
function. Indeed, if|ψ〉 is some state vector andZ = µ(A ·+ a) any Clifford operation
such thatZ|ψ〉 = |ψ〉, then the Wigner function of|ψ〉 must be invariant under the
affine transformationA ·+ a. So the analysis of Clifford symmetries of a quantum state
reduces to the study of classical symmetries of the related phase space distribution. In
the next paragraphs we will derive an algorithm that automatically detects a subset of
these symmetries.

Before proceeding, let us briefly turn to the concept of ahistogram. Given a function
f : A→ B defined on a finite setA, the histogramhistf : B → N is

histf (b) := |f−1(b)| (133)

that is, the number of timesf takes on the valueb.

Now consider a density matrixρ which fulfills the equationZρZ† = ρ for some

Z = µ(A · + a).

The following algorithm will recover the affine transformationA · + a givenρ, if the
criteria

• A has no eigenvectors and

• there exists at least oner ∈ R such that| histW (r)| = 1

are met.

1. Compute the Wigner functionWρ of ρ.

2. Compute thehistogramof the Winger function.

3. There is exactly one valuer such thathistW (r) = 1 (from the assumptions,
there is at least one such value – the uniqueness will be shownlater). Letv0 be
the phase space point whereW takes on that unique value.

4. Let{ei}i be a basis inV , let

vi := v0 + ei. (134)

Let Ti := {w ∈ V |W (w) = W (vi)} (T stands fortarget – the reason for this
designation will become apparent soon).
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5. Now, choose a vectorti from each setTi and assemble the vectorsti − v0 as the
columns of a matrixS. Then

S · +(1− S)v0 (135)

is a candidate for a symmetry ofρ. The original transformationA · +a will be
among the ones constructed in the described way.

Proof. (of the functioning of the algorithm)Let f : v 7→ Av + a be the affine transfor-
mation such thatµ(f) leavesρ invariant. From the covariance properties of the Wigner
function we know thatZρZ† = ρ if and only if

Wρ(f(v)) = Wρ(v)

for all v ∈ V . In other words,W must be constant on the orbits{Oi}i of f acting on
V . Therefore,

hist(r) =
∑

{i |W (Oi)=r}
|Oi|.

We have assumed thatA has no eigenvectors and hence the equation

f(v) = v

⇔ Av + a = v

⇔ Av − v = −a
⇔ −(A− 1)v = a

has exactly one solution, namely

v = v0 := −(A− 1)−1a.

So{v0} is the only orbit off with just a single element and we have proven the claim
made in step 3.

Consider the definitions from step 4 and 5. Certainly,f(vi) ∈ Ti and therefore, among
the matricesS constructed in step 5, there will be one with itsith column equal to
f(vi) − v0, for all i. But

Sei = f(vi) − v0

= A(v0 + ei) + a− v0

= Av0 +Aei − (A− 1)v0 − v0

= Aei +Av0 −Av0 + v0 − v0

= Aei

and thus there is a choice ofti ∈ Ti, for all i, such thatS = A. In that case

S · +(1− S)v0 = A · +a

which concludes the proof.
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8.1 Computer Implementation

The algorithm described in the last section was designed to analyze numerical data and
therefore this time the computer implementation is not justan accompanying example
but the sole reason for the algorithm to have been developed.

In[88]:= << head .m

<< qmatrixHead .m

<< sicNumerics .m

<< findAutomorphisms .m

The packagesicNumerics .mprovides the functionsic [] which returns aqmat-
rix representation of the numerical fiducial states found by Renes et al. for any di-
mension up to 45.

In[89]:= qInit [1, 5]

In[90]:= sic [5]

Out[90]=

æççççççççççççç
è

0.163095 - 0.35541 ä
0.304839 + 0.0113255 ä
0.278427 + 0.383676 ä
0.647962 - 0.282966 ä
0.154455 - 0.074289 ä

ö÷÷÷÷÷÷÷÷÷÷÷÷÷
ø

{ket[q1]}

On first sight, the Wigner function does not look like it conveys much information.

In[91]:= Visualize [sic [5]]
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Out[91]= -Graphics3D-

The histogram seems to be more promising:

In[92]:= numHistogram [wigner [sic [5]]] // MatrixForm
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Out[92]=

æççççççççççççççççççççççççççççç
è

1 -0.0732051
3 -0.0943128
3 -0.04984
3 0.0267202
3 0.0306711
3 0.0778175
3 0.0993055
3 0.124063
3 0.143311

ö÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷
ø

We can immediately guess thatsic [5] is invariant under a Clifford operation of order
three with one fixed point.

The functionfindAutomorphisms [] reports the linear part of the affine transfor-
mation.

In[93]:= autos = findAutomorphisms [sic [5]];

In[94]:= MatrixForm /@ autos

Out[94]= 9J 0 {1}5
{4}5 {4}5

N,J {4}5 {4}5
{1}5 0

N=
In[95]:= (S = autos [[1]]) // MatrixForm

Out[95]= J 0 {1}5
{4}5 {4}5

N
In[96]:= S.S // MatrixForm

Out[96]= J{4}5 {4}5
{1}5 0

N
In[97]:= S.S.S // MatrixForm

Out[97]= J{1}5 0
0 {1}5

N

This is indeed an order three matrix.

The functionfindOrigin [] checks if a Wigner function has one value that occurs
only once and reports the phase space point where that value is taken on.

In[98]:= v0 = findOrigin [wigner [sic [5]]]

Out[98]= {{2}5,0}

The next line shows how it looks like iffindOrigin fails to locate a unique point

In[99]:= findOrigin [wigner [W[{0, 0}]]]

findOrigin :: AmbiguousOrigin : Can¢t locate origin : 9925, 1
5
==

We have found an element of the Clifford group which should admit sic [5] as an
eigenvector...

In[100]:= a = (IdentityMatrix [2] - A).v0

Out[100]= {{2}5,{2}5}

In[101]:= (W[a] * *Μ[S] * * sic [5]) ˜prop˜ (sic [5])

Out[101]= True

...and indeed it does. The binary relation˜prop˜ tests vectors or operators for pro-
portionality:

In[102]:= X[1, 1]˜prop˜ - X[1, 1]

Out[102]= True
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The matrix we just found complies with Zauner’s conjecture.Can we discover anything
surprising?

In[103]:= qInit [1, 7]

In[104]:= MatrixForm /@(autos = findAutomorphisms [sic [7]])

testAutomorphism :: unexpectedDet : {{0,{6}7},{{6}7,{2}7}} has determinant {6}7

testAutomorphism :: unexpectedDet : {{{2}7,{2}7},{{2}7,{5}7}}hasdeterminant{6}7

testAutomorphism :: unexpectedDet : {{{5}7,{6}7},{{6}7,0}} has determinant {6}7

Out[104]= 9 J 0 {6}7
{6}7 {2}7

N,J {1}7 {5}7
{5}7 {5}7

N,J {2}7 {2}7
{2}7 {5}7

N,
J {5}7 {2}7
{2}7 {1}7

N,J {5}7 {6}7
{6}7 0

N=

The functionfindAutomorphisms [] performs some ’sanity checking’ on its find-
ings and warns that some symmetries it found correspond to linear transformations with
determinant 6=-1 (mod 7). They areanti-symplecticrather then symplectic matrices.

In[105]:= A = autos [[1]];

In[106]:= A.A // MatrixForm

Out[106]= J{1}7 {5}7
{5}7 {5}7

N
In[107]:= MatrixPower [A, 3] // MatrixForm

Out[107]= J{2}7 {2}7
{2}7 {5}7

N
In[108]:= MatrixPower [A, 6] // MatrixForm

Out[108]= J{1}7 0
0 {1}7

N

The automorphism group is cyclic of order six. We conclude that the usual order-
three symmetry group that seems to be present in all dimensions has an anti-symplectic
’root’ in dimension 7. It is not hard to see that the metaplectic representation on a two-
dimensional vector space can be extended to cover anti-symplectic transformations, if
one allows for anti-unitaryoperators.

Using the described method, we have verified the compatibility of Renes’ numerical
fiducial states with Zauner’s conjecture for all prime dimensions between 5 and 43.

After this work had been conducted, the compliance of Renes’s fiducial states with
Zauner’s conjecture has been verified by Appleby [34] using different techniques.
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Part II

Equivalence Relations Among
Stabilizer Codes
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9 Introduction

In quantum information theory it is natural to regard two multi-particle states asequiv-
alent if they can be mapped onto each other by a local unitary operation. However, the
task of deciding whether or not two given quantum states are equivalent in that sense
is far from easy. For the special case of stabilizer states, there is a second notion of
locality which is formulated in terms of their description as subspaces of a phase space
F

2n
d . Two stabilizer states are calledlocal Clifford (LC) equivalent if they are related

by the action of a local Clifford operation. Clearly (see Sections 4.5 and 5), this is the
case if and only if their associated isotropic spaces can be converted into each other by
a local symplectic mapping. A question that has attracted some attention in the litera-
ture is whether the two described definitions of locality agree: does local unitary (LU)
equivalence imply LC equivalence? The second half of this thesis is devoted to finding
a partial solution to this problem for the special case of binary states. The problem has
some history which can be found in Ref. [27, 22, 23, 24, 25].

The purpose of this first section is to develop some notions and tools for discussing
locality relations between stabilizer states. We start with an analysis of the space of
hermitian operators and their transformation properties under conjugation by local uni-
tary mappings. Some of the ideas and definitions in the following section are taken
from Ref. [28, 27] Since we will be concerned only with binarysystems,F meansF2

for the rest of the thesis.

The four-dimensional real vector spaceH of hermitian operators onC2 is spanned by
the Weyl operators

{w(0, 0), w(0, 1), w(1, 1), w(1, 0)} = {σ0, · · · , σ3} (136)

= {1, X, Y, Z} (137)

The Hilbert-Schmidt inner product

(ρ, σ) =
1

2n
tr(ρσ) (138)

turnsH into an orthogonal vector space. To emphasize the role ofH as an orthogonal
vector space, we adopt a bra-ket-type notation for its elements by setting

σi 7→ |i〉〉 (139)

for i ∈ {0, · · · , 3}. AsH possess an inner product, dual vectors are well-defined and
denoted as ’bra’s:

〈〈ρ| := (ρ, ·). (140)

Additionally, it will prove useful to talk about vectors ofH in terms of their coordinates
with respect to the orthonormal basis (139). For a vector|ρ〉〉 we define

ρi := 〈〈i|ρ〉〉 = (σi, ρ). (141)

Clearly,
|ρ〉〉 =

∑

i

ρi|i〉〉. (142)

The function
i 7→ ρi (143)
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is nothing else but thecharacteristic functionof |ρ〉〉. We write the coordinates of bras
with respect to the dual basis{〈〈i|}i using lower indices:

〈〈ρ| =
∑

i

ρi〈〈i|. (144)

However, it is easy to see that they coincide

ρi = ρi. (145)

Conjugation by a unitary operatorU induces a unimodular orthogonal mappingR(U)
in H via the relation

UσiU
† =

∑

j

Ri
jσj . (146)

What is more,all orthogonal matricesR ∈ SO(3) can be obtained this way. See [29]
for detailed formulas. Becauseσ0 is fixed under conjugation,R takes on the form

R =









1 0 0 0
0 r11 r12 r13
0 r21 r22 r23
0 r31 r32 r33









(147)

wherer = (ri
j) is a three-by-three orthogonal mapping. We have three ways of look-

ing at the transformation:

ρ′ = UρU † (148)

|ρ′〉〉 = R(U)|ρ〉〉
ρi′ = ρiRi′

i

Here, we have adopted the bad habit of general relativitiststo mark the transformed
version of a vector by priming its indices. Also, Einstein’ssummation convention
applies.

The generalization to tensor productsH = (C2)⊗n is straightforward.

The set

{|m〉〉 := w(m)|m ∈ F
2n} (149)

forms a basis in the space of hermitian operators onH. The characteristic function
becomes

|ρ〉〉 =
∑

m∈F2n

ρm|m〉〉 (150)

=
∑

i1,··· ,in

ρi1···in |i1〉〉 ⊗ · · · ⊗ |in〉〉.

The latter notation is more convenient when talking about transformation properties
and should cause no confusion. Under conjugation with a local unitary mapping

U = U1 ⊗ · · · ⊗ Un (151)

58



|ρ〉〉 transforms as

ρi′1···i′n = ρi1···in(R1)
i′1

i1
· · · (Rn)i′n

in
. (152)

For a phase space vectorm ∈ F
2n, thesupport ofm – suppm – is the set of systems

wherem is non-zero. We also need a term for the phase space points where a char-
acteristic function is non-zero. However, in order to avoidconfusion, we refrain from
using the wordsupportfor this set too. Instead, we speak of thedomainof a phase
space function. The domain of a vectordom |ρ〉〉 of H is defined via its characteristic
function:

dom |ρ〉〉 := dom ρ· := {m|ρm 6= 0}. (153)

If B is a subset ofF2n, thensuppB is the set{supp b|b ∈ B}, as one would expect.

Two more definitions are in place. Consider a set of systemsω ⊂ {1, · · · , n}. By
〈i1, · · · , i|ω|〉ω we denote the phase space vector that takes on the valuesi1 to i|ω| on
the systems inω and zero elsewhere. Conversely,πω(m) is the restriction ofm ∈ F

2n

to ω. πi(m) is the value ofm on theith system.

9.1 Stabilizer Codes

Fix an isotropic subspaceM of V and a basis{mi}i ofM . Using the definition ofs(·)
from Section 5, we define

wM (m) = s(m)w(m). (154)

It is now easily checked that

wM (m1 +m2) = wM (m1)wM (m2) (155)

for m1,m2 ∈ M and thus the representationm 7→ wM (m) is faithful. The set
{wM (m)|m ∈M} is an orthonormal basis in the space of all hermitian operators
whose domain is contained inM . If |ρ〉〉 is such an operator, its expansion reads

|ρ〉〉 =
∑

m∈M

ρm
MwM (m) (156)

where the functionm 7→ ρ·M is called theM -characteristic functionof |ρ〉〉. It holds
that

ρm
M = ρms(m). (157)

Of course, the representationwM (·) depends on the choice of a basis{mi} of M .
However, because that choice is completely arbitrary, we drop any reference to the
basis in our notation. Once a representationwM (·) is fixed, no phase ambiguity occurs
in the correspondence ofwM (m) to m, so we don’t necessarily distinguish between
phase space vectors and Weyl operators. For example, the symbolXXY Y 1 might be
an element of eitherF2n or ofH depending on the context.

For anyd-dimensional isotropic subspaceM of F
2n, we define

|M〉〉 :=
1

2d

∑

m∈M

wM (m) (158)

=
1

2d

∑

m∈M

s(m)|m〉〉. (159)

That is |M〉〉 is the projection operator onto the stabilizer code defined by M (see
Section 5).
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9.2 Invariant Subspaces

The fact that (147) does not mix non-trivial Weyl operators with the identity causes
some subspaces ofH to be invariant under the action of the local unitary group.

Definition 3 (Invariant subspaces)Letω be a subset of{1, · · · , n}.

1. Tω is the set of phase space vectors with support onω. I.e.

Tω := {m ∈ F
2n| supp(m) = ω}

2. Tω is the subspace ofH spanned by the operators

{|m〉〉|m ∈ Tω}.

3. We define
T̂ω =

∑

m∈Tω

|m〉〉〈〈m|.

This is the projection operator ontoTω .

Proof. (of the claim made in point 3)The range ofT̂ω is clearlyTω. Further,T̂ω is
idempotent

T̂ωT̂ω =
∑

m∈Tω

|m〉〉〈〈m|
∑

m′∈Tω

|m′〉〉〈〈m′|

=
∑

m,m′

|m〉〉〈〈m|m′〉〉〈〈m|

=
∑

m

|m〉〉〈〈m|

= T̂ω

and self-adjoint

〈〈ρ|T̂ωσ〉〉 =
∑

m

〈〈ρ|
(

|m〉〉〈〈m|σ〉〉
)

=
∑

m

〈〈ρ|m〉〉〈〈m|σ〉〉

=
∑

m

〈〈σ|m〉〉〈〈m|ρ〉〉

= 〈〈σ|T̂ωρ〉〉
= 〈〈T̂ωρ|σ〉〉.

Lemma 4 [28] The following holds.

1. Tω is preserved under the action of local unitaries.
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2. T̂ω commutes with local unitaries.

3. Let|ρ〉〉 be some element ofH whose domain is contained in an isotropic space
M . The effect ofT̂ on theM -characteristic function is

(

T̂ω|ρ〉〉
)m

M
= ρm

MχTω
(m)

whereχTω
is the indicator function onTω:

χTω
(m) :=

{

1 m ∈ Tω

0 else
.

Proof. The first assertion is proven in [28]. The second one follows immediately.
Lastly,

(

T̂ω|ρ〉〉
)m

M
= s(m)〈〈m|T̂ω |ρ〉〉

= s(m)〈〈ρ|T̂ω |m〉〉,

but

T̂ω |m〉〉 =

{

|m〉〉 m ∈ Tω

0 else
.

9.3 Composition

The standard operator product givesH the structure of an algebra. If|ρ〉〉 and|σ〉〉 are
elements ofH , we denote the their operator product as

|ρ〉〉 ⋆ |σ〉〉. (160)

If two hermitian operators|ρ〉〉 and|σ〉〉 have support on a common isotropic spaceM ,
theM -characteristic function of their operator product is particularly simple.

Lemma 5 Let |ρ〉〉 and |σ〉〉 be vectors onH . Letdom |ρ〉〉 anddom |σ〉〉 be subsets of
a common isotropic spaceM . Then

(|ρ〉〉 ⋆ |σ〉〉)m
M =

∑

m1 ∈ dom |ρ〉〉
m2 ∈ dom |σ〉〉
m1 +m2 = m

ρm
1 σ

m
2 .

Proof.

|ρ〉〉 ⋆ |σ〉〉 =





∑

m1∈dom |ρ〉〉
ρm1

M wM (m1)



 ⋆





∑

m2∈dom |σ〉〉
σm2

M wM (m2)





=
∑

m1∈dom |ρ〉〉

∑

m2∈dom |σ〉〉
ρm1

M σm2

M wM (m1 +m2).
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9.4 Traces

Having both kets and bras, we can construct operators onH . Indeed, it is easy to
pinpoint a basis of the set of all operators onH :

{|m〉〉〈〈n| |m,n ∈ F
2n}. (161)

Thus a basis expansion of an arbitrary operatorA reads

A =
∑

m,n∈F2n

Am
n|m〉〉〈〈n| (162)

For a subsetω of {1, · · · , n}, we define the partial trace overω in the same way it is
commonly used in Hilbert spaces:

Trω A :=
∑

m∈F
2|ω|
2

ω〈〈m|A|m〉〉ω . (163)

In terms of the characteristic function, the partial trace is acontraction. For example,
by tracing over the firstk systems, we get

(Trω A)ik+1···in

jk+1···jn
= Al1···lkik+1···in

l1···lkjk+1···jn
. (164)

The partial trace is compatible with LU-transforms in the sense that

Trω

(

RART
)

= Rω̄ (Trω A)RT
ω̄ (165)

as can be seen using (164).

The norm of|ρ〉〉 fulfills

|||ρ〉〉|| := 〈〈ρ|ρ〉〉 (166)

= Tr |ρ〉〈ρ|
= ρi1···inρi1···in

9.5 Clifford Operations

A Clifford operation is a unitary operator which maps Weyl operators onto Weyl op-
erators under conjugation. For a single systemn = 1, a Clifford operation thus corre-
sponds to apermutationof the basis vectors{|X〉〉, |Y 〉〉, |Z〉〉} modulo phases. We see
that a unitary mapping is a Clifford operation if and only if the matrixri

j (U), as de-
fined in (147), contains in each column exactly one entry different from zero. To satisfy
orthogonality, this entry must be one of{−1,+1}. Such a matrix is calledmonic[27].
One can weaken the notion of a Clifford operation to describeunitaries that map, for
example, only one of the three Weyl operators to another Weyloperator. This motivates
the following.

Definition 6 (i-monoticity)

1. An orthogonal three-by-three matrixr is calledi-monic if it contains at leasti
columns with exactly one non-zero entry each.
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2. If thejth column of a matrixr is monic, we say thatr is σj-monic.

3. A unitary operation on one system isi-monic if it induces ai-monic matrixr via
(147).

4. A local unitary mapping isi-monic if all its factors are.

For example, an operation isX-monic if it maps the operatorX to another Weyl oper-
ator under conjugation.

Lemma 7 (i-monic matrices)

1. Any orthogonal 2-monic matrix is 3-monic.

2. Any orthogonal 1-monic matrix is LC-equivalent to




cosφ −sinφ 0
sinφ cosφ 0

0 0 1



 .

The above matrix is induced by the Hilbert space operator

(

e−iφ/2 0

0 eiφ/2

)

.

3. Multiplication by 3-monic matrices preserves monoticity.

Proof. To prove the first claim, use the standard vector product to compute the third
column out of the two monic ones.

As for the second claim, letr be a 1-monic matrix. There exists a column, thekth
say, which is monic. Letl denote the position of the non-zero entry of that column, so
|rk

l| = 1. There is a representationπ of the symmetric groupS3 in terms of monic
SO(3)-matrices [27] generated by

(12) 7→





0 −1 0
−1 0 0
0 0 −1



 ,

(23) 7→





−1 0 0
0 0 −1
0 −1 0



 .

Modulo signs, this is the standard representation of the symmetric group by permuta-
tion matrices. Now letπ(3k) andπ(3l) by the images of the two-cycles(3k) and(3l)
underπ. Let

r̃ := π(3k)rπ(3l). (167)

It is easy to see that
∣

∣r̃33
∣

∣ = |rk
l| = 1 (168)
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which implies that both the third row and the third column ofr must be monic due to
orthogonality. Thus̃r has the form





a b 0
c d 0
0 0 ±1



 . (169)

We can assume that the sign ofr̂33 is positive, for else we multiply by




1 0 0
0 −1 0
0 0 −1



 ∈ SO(3). (170)

Then the upper left block matrix must be an element ofSO(2) and any such matrix is
of the form (2), as is well-known.

The generating unitary matrix can be found in Chapter 4.2 of [26].

Lastly, note that – modulo phases – left (right) multiplication with a 3-monic matrix
only permutes columns (rows) ofr and thus does not change monoticity.

10 Blocks

Consider an isotropic spaceM . Using Lemma 4 it is not hard to see that

supp dom |M〉〉 = {ω|∃m ∈M, supp(m) = ω}
= suppM

is an LU-invariant. It is known [30] that these invariants are not powerful enough to
discriminate LC-equivalence classes. Now, look at a subsetB of M and define

|B〉〉 =
∑

b∈B

wM (b).

Obviously,suppdom |ρ〉〉 = suppB is an LU-invariant as well. But in general we
can make little use of this information. Indeed, ifR is a local unitary operator such
thatR|M〉〉 is another stabilizer code|M ′〉〉, then there is no obvious interpretation of
domR|B〉〉 in terms of elements ofM ′ (remember that|B〉〉 does have such an inter-
pretation with respect toM ). However, there exists subsets ofM such thatdomR|B〉〉
is a subset ofM ′. We call those sets theblocksof M . It turns out that the supports of
the blocks of an isotropic space convey much information about the space itself. In the
sections to come, we will define and explore the block structure of isotropic spaces.

Definition 8 (Blocks)LetM be an isotropic space. Theblocks ofM are subsets of
M defined recursively by the following rules.

0. M is a block.

1. IfB is a block andω is a subset of{1, · · · , n} then

Tω ∩B

is a block, denoted byrω
1 (B).
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2. IfB1 andB2 are blocks then

B1 +B2 := {m1 +m2|m1 ∈ B1,m2 ∈ B2}

is a block, denoted asr2(B1, B2).

3. IfB1 andB2 are blocks then
B1 ∪B2

is a block, denoted asr3(B1, B2).

4. IfB is a block then

B \ Tω

is a block for everyω ⊂ {1, · · · , n}, denoted asrω
4 (B).

In other words, a block is the result of any recursive applications of the functionsri on
M . For example, the set

B := {m1 +m2|mi ∈M,m1 +m2 6= 0} (171)

can be written as
B = r(M) := r

{∅}
4 (r2(M,M)) (172)

and is thus manifestly a block.

Definition 9 (Block rules)If B is a block ofM andr is a composition of the functions
{ri}i=1···4 (as in (172)) such that

r(M) = B

then we say thatr is the rule ofB.

From the definition of a block, it is clear that such a (possibly non-unique) rule always
exists.

Here is why blocks are important.

Theorem 10 (A family of LU-invariants)LetM ⊂ F
2n be an isotropic space. Letr

be the rule for some block ofM . Then the function

M 7→ supp r(M)

is an LU-invariant.

The rest of this section is devoted to the proof of the theorem.

Definition 11 (Block vectors)LetM be an isotropic space. A vector|ρ〉〉 is called a
block vectorif

1. the domain of|ρ〉〉 is a block ofM and
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2. theM -characteristic function of|ρ〉〉 is non-negative.

In the following paragraphs, we’ll often speak of two block vectors at a time and as-
sume implicitly that their respective domains are blocks ofthe sameisotropic space.
This should always be clear from the context.

We now prove that there exists a quantum analogue of blocks.

Lemma 12 (Operations on block vectors)Let |ρ〉〉 and |σ〉〉 be block vectors. Letω be
a subset of{1, · · · , n}.

0. LetM be a isotropic space. Then|M〉〉 is a block vector wheredom |M〉〉 = M .

1. Let|ρ〉〉 be a block vector. Then

r̂ω
1 (|ρ〉〉) := T̂ω |ρ〉〉

is a block vector where

dom T̂ωB = Tω ∩ dom |ρ〉〉
= rω

1 (dom |ρ〉〉).

2. Let|ρ〉〉 and|σ〉〉 be block vectors. Then

r̂2(|ρ〉〉, |σ〉〉) := |ρ〉〉 ⋆ |σ〉〉

is a block vector where

dom(|ρ〉〉 ⋆ |σ〉〉) = (dom |ρ〉〉) + (dom |σ〉〉)
= r2(dom |ρ〉〉, dom |σ〉〉).

3. Let|ρ〉〉 and|σ〉〉 be block vectors. Then

r̂3(|ρ〉〉, |σ〉〉) := |ρ〉〉 + |σ〉〉

is a block vector where

dom (|ρ〉〉 + |σ〉〉) = dom |ρ〉〉 ∪ dom |σ〉〉
= r3(dom |ρ〉〉, dom |σ〉〉).

4. Let|ρ〉〉 be a block vector. Then

r̂4(|ρ〉〉) :=
(1− T̂ω

)

|ρ〉〉

is a block vector where

dom |ρ〉〉 \ Tω = rω
4 (dom |ρ〉〉).

Further, letB be a block ofM , and let ber a rule such thatr(M) = B. Let r̂ be the
operator obtained fromr by replacing each ruleri by r̂i. Then

dom r̂(|M〉〉) = r(M).

66



Proof. Let us look at the points in turn.

0. dom |M〉〉 = M which is a block ofM by Definition 8.0. Further, theM -
characteristic function of|M〉〉 is non-negative (and even constant):

〈〈m|s(m)|M〉〉 = 〈〈m|s(m)
∑

m′

s(m′)|m′〉〉

= s(m)s(m′)
∑

m′

〈〈m|m′〉〉

= s(m)2

= 1

1. By Lemma 4 theM -characteristic function of̂Tω |ρ〉〉 is pointwise non-negative
and its domain isdom |ρ〉〉 ∩ Tω. The latter set is a block ofM becausedom |ρ〉〉
is and thus the rule from Definition 8.1 is applicable.

2. Consider the formula in Lemma 5. If for a givenm, there existm1 ∈ dom |ρ〉〉
andm2 ∈ dom |σ〉〉 such thatm1+m2 = m then(|ρ〉〉+|σ〉〉)m

M is strictly positive
because all summands in the above mentioned formula are strictly positive. Thus
|ρ〉〉 + |σ〉〉 has the claimed domain and itsM -characteristic function is non-
negative. The claim is proven by the use of Definition 8.2.

The remaining points 3. and 4. can be verified analogously.

To prove the last statement, one only needs to compare the formulas for the domains
of the block vectors with the corresponding expressions in Definition 8.

Definition 13 (Rule Operators)If B is a block ofM and

B = r(M)

for some ruler, we define
|B〉〉 := r̂|M〉〉,

and call r̂ therule operatorcorresponding tor.

The following simple observation is crucial.

Lemma 14 Rule operators commute with local unitaries:

r̂R|M〉〉 = Rr̂|M〉〉,

for each local unitary operatorR.

Proof. The fact that the projectionŝTω commute with LU operators has been shown
in Lemma 4. Now recall that LU operators act onH by conjugation(see (146)). Thus
the application of LU operators commutes with composition,addition and subtraction
of vectors ofH . But these are the operations which ther̂i are built of.

We can now proof the central theorem of this section.
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Proof. (of Theorem 10). LetM be an isotropic space and letr be the rule for some
block ofM . Letω ⊂ {1, · · · , n}.

ω ∈ supp r(M) ⇔ ω ∈ supp r̂|M〉〉
⇔ {m ∈ dom r̂|M〉〉| supp(m) = ω} 6= {∅}
⇔ T̂ω r̂|M〉〉 6= 0.

The last line is LU-invariant by Lemma 4 and Lemma 14.

There is a particular type of blocks that will prove useful inthe sequel.

Definition 15 We define the rule

d(B) := (B +B) \ T{∅}
= {b1 + b2|b1, b2 ∈ B ∧ b1 + b2 6= 0}.

11 A Restriction on LU Operators

Not every local unitary operator can map a stabilizer code toanother one. We will
now explore the restrictions imposed on LU operators by the requirement that they do
possess this capability.

Lemma 16 Let M be an isotropic space, letB be a block ofM . LetR be a local
unitary mapping such thatR|M〉〉 is again a stabilizer code|M ′〉〉.
If B = {m} is of order 1 thenR is 1-monic onsuppm.

Proof. Letr be the rule corresponding toB. The main task is to show thatB′ := r(M ′)
has again order one. Using Definition 15 it is easy to see that

d(B) = {∅}.

That is,supp d(B) = supp d(B′) = {∅}. But supp d(A) = {∅} for some blockA
only if |A| = 1 because ifA had two distinct elementsm1 andm2, then0 6= m1+m2 ∈
d(A) by Definition 15.

Now, consider|B〉〉 and|B′〉〉 = R|B〉〉. We know that the respective domain of each
of these operators is just one phase space point. Thus they are proportional to the Weyl
operators|m〉〉 and|m′〉〉 respectively. But because both Weyl operators andR are local
by definition,

Ri|πi(m)〉〉 = |πi(m
′)〉〉

for all i ∈ suppm. It follows thatRi is πi(m)-monic.

The above result can be slightly generalized.

Lemma 17 Let M be an isotropic space, letB be a block ofM . LetR be a local
unitary mapping such thatR|M〉〉 is again a stabilizer code|M ′〉〉.
If for some systemi it holds that|πi(B)| = 1 andπi(B) 6= {1}, thenRi is 1-monic.
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Proof. As in the last proof, we see that|πi(B
′)| must be one. Indeed, no elementω

of B + B contains the systemi and hence the same holds for the elements ofB′ +
B′. Again, if there were two vectorsm1 andm2 in B′ that differed oni, theni ∈
supp(m1 +m2) which is a contradiction.

Now, let{W} = πi(B). It is easy to see that

|B〉〉 = |W 〉〉i ⊗ |V 〉〉
|B′〉〉 = |W ′〉〉i ⊗ |V ′〉〉

for some vectors|V 〉〉, |V ′〉〉. Ri maps|W 〉〉 to±|W ′〉〉 and is thusW -monic.

Next, we will consider a type of blocks which imposes an even stronger restriction on
R.

Definition 18 (See [27]). A blockB is said to be ofRains’ typeif

1. B is of order three,

2. all elements have support on the same set of systemsω,

3. for any systemi ∈ ω, |πi(B)| = 3, that is, all elements ofB are pairwise
different on any system,

4. |ω| > 2.

It is easy to see that any block of Rains’ type is LC-equivalent to
{

X |ω|, Y |ω|, Z |ω|
}

. (173)

Lemma 19 Let M be an isotropic space, letB be a block ofM . LetR be a local
unitary mapping such thatR|M〉〉 is again a stabilizer code|M ′〉〉.
If B = r(M) is of Rains’ type thenB′ := r(M ′) is again of Rains’ type.

Proof. There is no loss of generality in assuming thatB is of the form (173).

Using Definition 15 one finds by direct calculation that

d(B) = B (174)

and hence
supp d(B) = supp d(B′) = ω. (175)

We can now show that any two distinct elementsm1,m2 of B′ differ on all systems of
ω. Indeed, let us assume to the contrary, that there exists a systemi ∈ ω such thatm1

equalsm2 on i. Theni /∈ supp(m1 +m2) and thus

supp(m1 +m2) 6= ω.

From Definition 15 we know that

m1 +m2 ∈ d(B′)

and thus
supp(m1 +m2) ∈ supp d(B′)

which contradicts (175).

We go on to show that|B′| = 3 by ruling out all other cases.
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1. Assume|B′| > 3. Then on any systemi at least two elements ofB′ must
be equal (for there are only three different values to choosefrom). But this is
impossible from the last paragraph.

2. If on the other hand|B′| = 0 or |B′| = 1. Thend(B′) = {∅} again contradicting
(175).

3. Lastly, if |B′| = 2 thenB′ is LC-equivalent to

{X |ω|, Z |ω|}

and we see that
d(B′) ∼LC {Y |ω|}.

Thus
d2(B′) = {∅} (176)

(again by Definition 15). But (174) shows that

d2(B) = d(B) = B

implying that
ω = supp d2(B) = supp d2(B′)

which contradicts (176).

B′ is therefore a block of order three and any two vectors inB′ differ on all systems.
But any such block is LC-equivalent to (173).

Lemma 20 Let M be an isotropic space, letB be a block ofM . LetR be a local
unitary mapping such thatR|M〉〉 is again a stabilizer code|M ′〉〉.
If B = r(M) is of Rains’ type thenR is 3-monic onω.

Proof. By Lemma 19 we know that there exists an LC-mappingL such thatLB′ = B.
Because of Lemma 6,µ(L)R is 3-monic if and only ifR is and hence there is no loss
of generality in assuming thatR is such thatB = B′. Further, we assume thatB is of
the form (173).

The rest of the proof is due to Rains (Theorem 13 in [27]). We repeat it here for the
sake of completeness, in order to translate it into our language and to make some slight
generalizations.

Let

|ρ〉〉 := |B〉〉
|ρ′〉〉 := R|B〉〉

Recall that any vector|σ〉〉 with domainB has the form

|σ〉〉 = σX···X |X〉〉1 ⊗ · · · ⊗ |X〉〉|ω| +

σY ···Y |Y 〉〉1 ⊗ · · · ⊗ |Y 〉〉|ω| +

σZ···Z |Z〉〉1 ⊗ · · · ⊗ |Z〉〉|ω|.

70



Now letβ = {1, 2}, γ = {3, · · · , |ω|} and consider the operator

ρ′X···X |X〉〉22〈〈X | = 1〈〈X | [Trγ |ρ′〉〉〈〈ρ′|] |X〉〉1
= 1〈〈X |

[

Trγ R|ρ〉〉〈〈ρ|RT
]

|X〉〉1
= 1〈〈X |

[

Trγ Rβ |ρ〉〉〈〈ρ|RT
β

]

|X〉〉1
= R2

(

1〈〈X |
[

R1 Trγ |ρ〉〉〈〈ρ|RT
1

]

|X〉〉1
)

RT
2 .

From the first line it is clear that the rank of the operator is 1. Thus

1 = rankR2

(

1〈〈X |
[

R1 Trγ |ρ〉〉〈〈ρ|RT
1

]

|X〉〉1
)

RT
2

= rank 1〈〈X |
[

R1 Trγ |ρ〉〉〈〈ρ|RT
1

]

|X〉〉1.

But

Trγ |ρ〉〉〈〈ρ| = ρX···X |XX〉〉〈〈XX |+
ρY ···Y |Y Y 〉〉〈〈Y Y | +
ρZ···Z |ZZ〉〉〈〈ZZ|

and thus

1〈〈X |
[

R1 Trβ |ρ〉〉〈〈ρ|RT
1

]

|X〉〉1 = (R1)
X

X ρX···X |X〉〉〈〈X | +
(R1)

X
Y ρY ···Y |Y 〉〉〈〈Y | +

(R1)
X

Z ρZ···Z |Z〉〉〈〈Z|

which has rank 1 if and only if(R1)
X

· is monic. The same argument can be repeated
with 1〈〈X | · |X〉〉1 replaced by the corresponding expressions involvingY andZ and
henceR1 must be 3-monic. The same holds for all systems.

Part of the definition of a block of Rains’ type was that|ω| > 2. This is no restriction
of generality as the following lemma shows.

Lemma 21 LetM be an isotropic space. If|M〉〉 is fully entangled, then there is no
subset inM which fulfills Rains’ condition except that|ω| = 2.

Proof. LetM ⊂ F
2n be an isotropic space and letB ⊂ M be a subset as stated in the

lemma. In compliance with (173), we assume thatB has the form

{〈XX〉ω, 〈Y Y 〉ω, 〈ZZ〉ω}. (177)

Two phase space vectors commute if and only if they are non-zero and different on
an even number of systems. Thus any vector which commutes with the elements in
B must beXX,Y Y, ZZ or 11 on ω. Therefore,M is spanned byB and the set of
vectors which equal11 onω. Denote the latter set byA. Then

M = A⊕B

and hence
|M〉〉 = |A〉〉 ⊗ |B〉〉.

The expression is well-defined because bothA andB ∪ {0} are isotropic spaces. We
conclude that|M〉〉 is not fully entangled.
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Definition 22 (Simple blocks)B is a simple blockif | suppB| = 1, that is, if all its
elements have the same support.

We now state the central theorem of this section. Here, and inthe sequel, we’ll always
assume that for any isotropic spaceM , dimM > 2, to rule out some special cases.

Theorem 23 (Restriction on LU mappings)Let M be an isotropic space. IfR is a
local unitary operator such thatR|M〉〉 is again a stabilizer code|M ′〉〉, thenR is
1-monic.

Proof. Fix a systemi. We will prove the following assertion by induction on|ω|:
If M contains a simple blockB wheresupp(B) = ω andi ∈ ω thenRi is 1-monic.

If |ω| = 1 thenB is one ofX , Y orZ on theith system.Ri is then 1-monic by Lemma
16. Now suppose|ω| > 1. Let’s treat three different cases in turn:

1. |πi(B)| = 1. ThenRi is πi(B)-monic by (17) and we are done.

2. |πi(B)| = 2. There exist two elementsm1,m2 ∈ B such thatπi(m1) 6= πi(m2)
and hence

i ∈ ω′ := supp(m1 +m2). (178)

Clearly then,
A := (B +B) ∩ Tω′ (179)

is a simple block ofM . Further,πi(A) = πi(m1 +m2), thus|πi(A)| = 1 and
we have reduced this case to the previous one.

3. |πi(B) = 3|. We know there exist elementsm1,m2,m3 of B such that

πi(m1) = X

πi(m2) = Y

πi(m3) = Z.

We again distinguish two cases.

(a) Suppose among those three vectors there exists a pair〈mk,ml〉 such that
ω′ := supp(mk +ml) is a proper subset ofω. DefineA as in (179).A is a
simple block,i ∈ supp(A) and further| suppA| = |ω′| < |ω| and thus the
existence ofA is sufficient to conclude thatRi is 1-monic by the induction
hypothesis.

(b) If the condition for the last case can not be fulfilled thenany two vectors of
{m1,m2,m3} differ on all systems. Thus{m1,m2,m3} is LC-equivalent
to (173) and there is no loss of generality in assuming that

m1 = X |ω|

m2 = Y |ω|

m3 = Z |ω|.

If |B| = 3 thenRω is 3-monic by Lemmas 20 and 21 and nothing remains
to be shown. So assume that|B| > 3. There exists a vectorm4 ∈ B

72



distinct fromm1, m2, m3. Let’s for now assume thatπi(m4) = X (all
other cases can be treated in an analogue way). There must exist a proper
subsetω′ of ω such thatπω′(m4) equals eitherY |ω′| or Z |ω′| for elsem4

would equalm1. DefineA as in (179) and proceed by induction as in 3a.

Finally, note that for any systemi there exists a simple blockB such thati ∈ suppB.
Take any elementm of M such thati ∈ suppm. Then

TsuppmM

is such a simple block.

We have seen that the presence of blocks of order one and of Rains’ type are sufficient
to ensure that only 1-monic unitaries can map stabilizer codes to stabilizer codes. It is
natural to suspect that blocks of higher orders impose even stronger restrictions on the
unitaries and that – except for the well-known Bell state case – only Clifford operations
can map stabilizer codes to stabilizer codes. However, thisis not so as the following
example shows.

12 An Example: GHZ-State on Four Systems

We consider the GHZ-State on four systems:

|GHZ〉 = |0000〉+ |1111〉. (180)

It is a stabilizer state corresponding to the isotropic spaceM spanned by the columns
of the matrix









z . . x
z z . x
. z z x
. . z x









. (181)

We have replaced ’0’ by a dot in order to underline the supportof the vectors. The
entire isotropic space is









. . . . x x x x z z z z y y y y

. . z z x x y y . . z z x x y y

. z . z x y x y . z . z x y x y

. z z . x y y x z . . z y x x y









. (182)

We clearly see that the blocks of order one guarantee thez-monoticity. But we have no
tool at hand that would tell us whether or not the block









x x x x y z y y y
x x y y y z y x x
x y y x x z y y x
x y x y x z y x y









(183)

can be mapped to the block of another stabilizer state by a non-Clifford operation.
However, the structure of the Hilbert space vector|GHZ〉 is much easier. Indeed,

(

e−iφ1/2 0

0 eiφ2/2

)

· · ·
(

e−iφ4/2 0

0 eiφ4/2

)

|GHZ〉

∝ e−i(φ1+···+φ4)|0000〉+ |1111〉 (184)
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which equals|GHZ〉 if and only if the phasesφi sum to unity. So we have found a
(n− 1)-parameter family of non-Clifford automorphisms of the GHZ-state and thus of
(183). It is not hard to see that all local unitary automorphisms of the GHZ state are
contained in this group.

The result can easily be generalized to any GHZ-state on an even number of systems.

13 LU=LC for Blocks

In Lemma 6 we have shown that any 1-monic LU operatorR is LC-equivalent to an
operatorR̃ = µ(L2)Rµ(L1) which fixesZ. Therefore,R|M〉〉 is another stabilizer
code|M ′〉〉 if and only if

R̃|L1M〉〉 = |L−1
2 M ′〉〉. (185)

Clearly,M andM ′ are LC-equivalent if and only ifL1M andL−1
2 M ′ are. This moti-

vates the following definition.

Definition 24 (Reductions)

1. Thereduced local unitary groupRLU is defined to be

{R ∈ LU |Ri|Z〉〉 = |Z〉〉}.

That is, each factor of an operator inRLU keepsZ fixed. RLC is defined
similarly.

2. For a phase space vectorm ∈ F
2n, we define itsreduced supportto be the set of

systems wherem isX or Y :

suppRm := {i|π(m) ∈ {X,Y }}.

3. Letβ1 andβZ be subsets of{1, · · · , n}.

(a) Sβ1,βZ
is the set of phase space vectors which are equal to1 on β1 and

equal toZ onβZ .

(b) Ŝβ1,βZ
is the projection operator onto the space spanned by

{|m〉〉|m ∈ Sβ1,βZ
}.

Having these terms at hand, we can formulate a corollary of the discussion at the be-
ginning of the section.

Lemma 25 LU(M) = LC(M) for all isotropic spacesM if and only ifRLU(M) =
RLC(M) for all suchM .

Proof. See discussion above.

In the light of the last lemma, we will restrict our attentionto the action of the reduced
groups in the sequel. In order to suit this new situation, we now re-define the notion
of a block. It is our hope that the confusion that arises due to giving a new meaning to
an existing term is less than the confusion which the introduction of yet a new type of
blocks would cause.
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Definition 26 LetM be an isotropic space. A subsetB ofM is a block ofM if

1. B is a block in the sense of Definition 8

2. IfB is a block, then
Sβ1,βZ

∩B =: r(β1,βZ)
s (B)

is a block for all subsetsβ1, βZ of {1, · · · , n}.

The rule operator associated tors is

r̂(β1,βZ)
s |ρ〉〉 = Ŝβ1,βZ

|ρ〉〉.

Lemma 27 The function
B 7→ supp(B)

is an RLU-invariant for all blocksB.

Proof. We omit the proof, which can be conducted along the same linesas the one in
Section 10.

A vectorm ∈ F
2n which has trivial reduced supportsuppRm = {∅} is invariant under

the action of the reduced groups. Further, consider two vectorsm1, m2 with have the
same reduced support. Their sum is an invariant vector becausesuppR(m1 +m2) =
{∅}. A re-occurring scheme in the next paragraphs will be to describe as many aspects
of a block as possible in terms of invariant vectors.

Lemma 28 (Generated Subspaces)LetB be a block of an isotropic spaceM . Then

〈B〉 := {all linear combinations of elements of B}

is a block ofM .

Proof.

〈B〉 = (B ∪ 0)+n

= (B ∪ T{∅}(M))+n.

Definition 29 A blockB is calledprimary if

B = Sβ1,βZ
∩M.

If B ⊂ B generates a primary blockB in the sense that

Sβ1,βZ
∩ 〈B〉 = B

thenB is called abasisofB.
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Lemma 30 (Properties of Primary Blocks)LetM be an isotropic space, letB be a
block ofM . LetR ∈ RLU such thatR|M〉〉 is again a stabilizer code|M ′〉〉.
If

B = Sβ1,βZ
∩M.

is primary, then

1.
|B′| = |B|.

2.

Sβ1,βZ
∩ 〈B〉 = B

Proof.

1. Lemma 4 can easily be adopted to the new definition of a block. We then see that

2d
(

Ŝβ1,βZ
|M〉〉

)m

=

{

±1 m ∈ Sβ1,βZ
∩M

0 else

and thus

||2dŜβ1,βZ
|M〉〉|| = |Sβ1,βZ

∩M |
= |B|

by (166). The last statement is clearly LU-invariant.

2. Let b ∈ B. Clearly, b ∈ 〈B〉 and henceb ∈ Sβ1,βZ
∩ 〈B〉. Conversely, if

b ∈ Sβ1,βZ
∩ 〈B〉 thenb ∈M in particular andb ∈ Sβ1,βZ

, thereforeb ∈ B.

The preceding lemma shows that each primary block has a basis.

Theorem 31 LetM be an isotropic space, letB be a reduced block ofM . LetR ∈
RLU such thatR|M〉〉 is again a stabilizer code|M ′〉〉.
If

B = Sβ1,βZ
∩M.

is primary, thenB′ is RLC-equivalent toB.

Proof. Let B = {m1, · · · ,md} be a basis ofB. The following set is another basis in
B:

N := {m1,m2 +m1

=:n2

,m3 +m1

=:n3

, · · · ,md +m1

=:nd

}
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The vectorm1 is the only element inN that has a non-trivial reduced support. In con-
trast, the vectors{ni}n=2···d are invariant and thus contained inM ′. BecausesuppRB
is anRLU -invariant, there must exist at least one elementn1 in M ′ such that

suppR n1 = suppRB.

Besides its support, we don’t know anything aboutn1 and the key observation is that
we need not to. Indeed, irrespective of the details ofn1, it holds that

{n1, n2, · · · , nd} =: B′ ⊂M ′

is RLC-equivalent to
{m1, n2, · · · , nd} = B ⊂M.

This is becausen1 andm1 are RLC-equivalent (any pair of vectors with same reduced
support is) and theni, i > 2 are RLC-invariant. But then

Sβ1,βZ
∩ 〈B〉 ∼LC Sβ1,βZ

∩ 〈B′〉

The right-hand side is a subset of

Sβ1,βZ
∩M ′ = B′.

HenceB′ contains a subset which is RLC-equivalent toB. But because of Lemma
30.1 this subset must be all ofB′.
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14 The Next Step

Until now we have tried to tackle the LU-equivalence problemby dividing the isotropic
spaces into ’building blocks’ and solving the problem for these smaller constituents.
This programme has been completed, because any isotropic space is the disjoint union
of its primary blocks. We now need to put the pieces back together.

Indeed, consider two blocksB1 andB2 of M . We know there exist LC operatorsL1

andL2 such thatRBi = LiBi for any LU operatorR. But it is a priori not clear that
there exists anL thatsimultaneouslymapsB1 toB′

1 andB2 toB′
2.

Unfortunately, a solution to this problem is currently not in sight. We will briefly
describe why this task poses a serious challenge and what further questions need to be
addressed. Consider two blocksB1 andB2 with respective reduced supportsω1, ω2

and their imagesB′
1 andB′

2 under some RLU-operation. The result of the last section
allows us to assume thatB′

1 = B1 without loosing generality. By the remark following
Lemma 27, it holds thatB1 + B2 is a block with reduced supportω1∆ω2. Here,a∆b
denotes thesymmetric complementof the setsa andb. Therefore,πω1∩ω2

(B1 + B2)
is invariant. The latter invariant describes in a sense thecorrelationsbetweenB1 and
B2. The proof of Theorem 31 can now be generalized to yield that these correlations
already determineB′

2 on the systemsω1 ∩ ω2. More concretely, in the above setting
we automatically haveπω1

(B′
2) = πω1

(B2). Furthermore, it is not hard to see that by
the use of RLU operations that act only on the complementω̄1 of ω1 it is possible to
achieveπω̄1

(B′
2) = πω̄1

(B2). Summarizing, we have

B′
1 = B1 (186)

πω1
(B′

2) = πω1
(B2) (187)

πω̄1
(B′

2) = πω̄1
(B2). (188)

Note that the last two conditions are not sufficient to conclude thatB′
2 = B2 holds,

opposed to what a naive intuition might suggest.

For the case of a code spanned by only two blocks, it is still feasible to prove that LU
equivalence implies LC equivalence. However, already starting with three blocks, only
partial correlations in the sense of Eq. (187), (188) can be shown to hold. The next step
in the analysis of the LU-equivalence vs. LC-equivalence problem must clearly be to
gain a greater understanding of the implications of these partial correlations.
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15 Conclusions

In this work a coherent picture of phase space methods in quantum information has
been drawn. A description ofcharacteristic functions, Wigner functionsandstabilizer
codesin an algebraic language has been given. We have analyzed theautomorphism
group of the Weyl operators and used theses results to describe the covariance proper-
ties of Wigner functions. The case of phase spaces over extension fields has received
a detailed treatment. We applied the findings to the analysisof Clifford symmetries
of a set of numerically given quantum states that generate SIC POVMs. Many of the
introduced concepts have been implemented in a collection of packages for a computer
algebra system. Lastly, we have set up a framework for discussing the problem of lo-
cal unitary vs. local Clifford equivalence of stabilizer codes and derived some partial
results on that open problem.
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17 Zusammenfassung

Diese Arbeit befasst sich mit endlichen Phasenräumen und drarauf basierenden Metho-
den in der Quanteninformationstheorie. Die Konzepte dercharakteristischen Funktion,
derWignerfunktionund vonStabilisatorkodeswerden in einer einheitlichen, algebra-
ischen Sprache präsentiert. Desweiteren analysieren wir die Automorphismengruppen
von Weyloperatoren und verwenden diese Resultate um die Kovarianzeigenschaften
von Wignerfunktionen zu beschreiben. Der Spezialfall von Phasenräumen über alge-
braischen Erweiterungskörpern wird im detailiert behandelt. Diese Erkenntnisse wer-
den weiter verwendet um die Clifford-Symmetrien von numerisch gegebenen Quanten-
zuständen zu analysieren, die SIC POVMs erzeugen. Viele dereingeführten Konzepte
wurden in einer Sammlung von Paketen für ein Computeralgebra-System implemen-
tiert. In einem zweiten Teil wird ein mathematischer Rahmenzur Diskussion des Prob-
lems von lokaler unitärer Äquivalenz im Gegensatz zu lokaler Clifford Äquivalenz von
Stabilisatorkodes geschaffen. Wir geben einige Teilantworten zu diesem offenen Prob-
lem.

Diese Arbeit wurde von dem Autor selbständig und ohne Zuhilfenahme anderer als der
angegebenen Quellen verfasst.
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18 Appendix I: SIC POVMs and Zauner’s Conjecture

The following is a summary of the SIC POVM problem written by the author for the
Open Problems in Quantum Informationcollection maintained at [31].

18.1 Problem

We will give three variants of the problem, each being stronger than its predecessor.
The terminology of problems 1 and 2 is taken mainly from [32].For problem 3 see
[33] and [34].

18.1.1 Problem 1 (SIC-POVMs)

A set ofd2 normed vectors{|φi〉}i in a Hilbert space of dimensiond constitutes a set
of equiangular linesif their mutual inner products

|〈φi|φj〉|2

are independent of the choice ofi 6= j. It can be shown [32] that

• the associated projection operators sum to a multiple of unity and thus induce a
POVM (up to normalization) and that

• these operators are linearly independent and hence any quantum state can be
reconstructed from the measurement statisticspi := tr (|φi〉〈φi|ρ) of the POVM.

A POVM that arises in this way is calledsymmetric informationally complete, or a
SIC-POVMfor short.

The most general form of the problem is: decide if SIC-POVMs exists in any dimension
d.

18.1.2 Problem 2 (Covariant SIC-POVMs)

A vector|φ〉 is called afiducial vectorwith respect to the Heisenberg group if the set
{

w(p, q) |φ〉〈φ|w(p, q)†
}

p,q=0..d−1
(189)

induces a SIC-POVM. Such a SIC-POVM is said to begroup covariant. The defini-
tion makes sense for any group of order at leastd2. However, we will focus on the
Heisenberg group in what follows.

The problem: decide if group covariant SIC-POVMs exist in any dimensiond.

18.1.3 Problem 3 (Zauner’s Conjecture)

The normalizer of the Heisenberg group within the unitariesU(d) is called theClifford
group. There exists an elementz of the Clifford group which is defined via its action
on the Weyl operators as

z w(p, q)z† = w(q − p,−p). (190)

Zauner’s conjecture, as formulated in [34], runs: in any dimensiond, a fiducial vector
can be found among the eigenvectors ofz.
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18.2 Background

Besides their mathematical appeal, SIC-POVMs have obviousapplications to quan-
tum state tomography. The symmetry condition assures that the possible measurement
outcomes are in some sense maximally complementary.

18.3 History and Partial Results

• In the context of quantum information, the problem seems to have been tackled
first by Gerhard Zauner in his doctorial thesis [33] in 1999. To our knowledge,
the results were neither published nor translated into English, which caused some
confusion in the English literature, as to what Zauner had actually conjectured4.
Zauner analyzed the spectrum ofz. He listed analytical expressions for fiducial
vectors in dimension 2, 3, 4, 5 and numerical expressions ford = 6, 7. He noted
that for dimension 8 an analytic SIC-POVM is known, which is covariant under
the action of the threefold tensor product of the two dimensional Heisenberg
group.

• Wide interest in the problem arose with the 2003 paper by Renes et. al. [32].
Building on concepts fromframe theory, the authors reduced the task of nu-
merically finding fiducial vectors to a non-convex global optimization problem.
Using this method, they presented numerical fiducial vectors for all dimensions
up to 45 and counted the number of distinct covariant SIC-POVMs up to dimen-
sion 7. The question of whether those vectors were eigenstates of a Clifford
operation was left open (but see below). Further, four groups other than the
Heisenberg group were numerically found to induce SIC-POVMs in the sense of
(189).

The authors showed that a SIC-POVM corresponds to aspherical 2-design5.
The same assertion was proven by Klappenecker and Rötteler in [35] and was
apparently known to Zauner (see Remark 3 in [35]).

• In [36] Grassl used a computer algebra system capable of symbolic calculations
to prove Zauner’s conjecture ford = 6. He remarked that elements of the Clif-
ford group map fiducial vectors onto fiducial vectors. Building on that obser-
vation, he could account for all 96 covariant SIC-POVMs thatwere reported to
exist ford = 6 in [32].

• Appleby in [34] gave a detailed description of the Clifford group and extended
it by allowing for anti-unitary operators. He verified that the numeric solutions
of [32] were compatible with Zauner’s conjecture and analyzed their stability
groups inside the Clifford group6. Appleby goes on to present analytical expres-
sions for fiducial vectors in dimension 7 and 19 and specifies an infinite sequence
of dimensions for which he conjectures that solutions can befound more easily.

• Inspired by a construction that links finite geometries to MUBs, there have been
some speculations by Wootters about whether SIC-POVMs can be linked to finite

4Refer e.g. to the first vs. the second version of [34] on the arXiv server.
5A finite setX of unit vectors is at-designif the average of anyt-th order polynomial overX is the same

as the average of that polynomial over the entire unit sphere.
6The same results were derived in Section 8.
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affine planes [37]. The same line of thought was pursued by Bengtsson and
Ericsson in [38]. However, the existence of such a construction remains an open
problem. The results by Grassl are of some relevance here, asit is known that
affine planes of order 6 do not exist.

82



References

[1] D. Jungnickel,Finite fields.(BI-Wiss.-Verl., Mannheim, 1993).

[2] B. Huppert,Endliche Gruppen.(Springer, Berlin, 1967).

[3] E. Wigner,On the Quantum Correction For Thermodynamic Equilibrium.Phys.
Rev.40, 749 (1932).

[4] W.K. Wootters,A Wigner-Function Formulation of Finite-State Quantum-Mech-
anics, Annals of Physics167, 1 (1987).

[5] U. Leonhardt,Quantum-State Tomography and Discrete Wigner Function. Phys.
Rev. Let.74, 4101 (1995).

[6] P. Bianucci, C. Miquel, J.P. Paz, and M. Saraceno,Discrete Wigner functiosn and
the phase space representation of quantum computers.quant-ph/0106091.

[7] J.P. Paz,Discrete Wigner functions and the phase space representation of quan-
tum teleportation. quant-ph/0204150.

[8] N. Mukunda, S. Chaturvedi, and R. Simon,Wigner distributions for non Abelian
finite groups of odd order. quant-ph/0305127.

[9] K.S. Gibbons, M.J. Hoffman, and W.K. Wootters,Discrete phase space based on
finite fields.Phys. Rev. A70, 062101 (2004), quant-ph/040115.

[10] A. Vourdas,Quantum systems with finite Hilbert space.Rep. Prog. Phys.67, 267
(2004).

[11] A.S. Holevo,Probabilistic and statistical aspects of quantum theory.(North-
Holland Publ. Co., Amsterdam, 1982).

[12] M. Neuhauser,An Explicit Construction of the Metaplectic Representation over
a Finite Field.Journal of Lie Theory12, 15 (2002).

[13] G.B. Folland,Harmonic analysis in phase space.(Princeton Univ. Pr., Princeton,
1989).

[14] W. Rudin,Fourier analysis on groups.(Wiley-Interscience, New York, 1990).

[15] B. Simon,Representations of fintie and compact groups.(American Mathematical
Society, Providence, Rhode Island, 1996).

[16] T. Felbinger, qmatrix: A Package for Quantum Information Theory,
http://library.wolfram.com/infocenter/MathSource/1893.

[17] M. Hein, J. Eisert, and H.J. Briegel,Multi-party entanglement in graph states,
Phys. Rev. A69, 06231 (2002), quant-ph/0206171.

[18] D. Schlingemann,Quantum error-correcting codes associated with graphs,
quant-ph/0012111, D. Schlingemann,Stabilizer codes can be realized as graph
codes, quant-ph/0111080.

[19] D. Schlingemann,Cluster states, algorithms and graphs, quant-ph/0305170.

83



[20] J. Dehaene and B. De Moor,The Clifford group, stabilizer states, and linear and
quadratic operations over GF(2). Phys. Rev. A68, 042318 (2003).

[21] R. Berndt, R. Schmidt,Elements of the representation theory of the Jacobi Group.
(Birkhäuser, Basel, 1998).

[22] M. Van den Nest, J. Dehaene, and B. De Moor,Local invariants of stabilizer
codes.quant-ph/0404106.

[23] M. Van den Nest, J. Dehaene, and B. De Moor,The invariants of the local Clifford
group.Phys. Rev. A71, 022310 (2005), quant-ph/0410035

[24] M. Van den Nest, J. Dehaene, and B. De Moor,Finite set of invariants to charac-
terize local Clifford equivalence of stabilizer states.quant-ph/0410165.

[25] M. Van den Nest, J. Dehaene, and B. De Moor,On local unitary versus local
Clifford equivalence of stabilizer states.quant-ph/0411115.

[26] M. A. Nielsen, I.L. Chuang,Quantum computation and quantum information.
(Cambridge University Press, Cambridge, 2000).

[27] E. M. Rains, Quantum Codes of Minimal Distance Two.quant-ph/9704043
(1997).

[28] H. Aschauer, J. Calsamiglia, M. Hein, and H. J. Briegel,Local invariants
for multi-partite entangled states allowing for a simple entanglement criterion.
Quant. Inf. Comp. 4, 383 (2004), quant-ph/0306048.

[29] J. Schwinger,Unitary Operator Bases.Proc. NAS 46, 570 (1960).

[30] A. Bouchet, Recognizing locally equivalent graphs.Discrete Math.114, 75
(1993).

[31] O. Krüger, R.F. Werner (editors),Open Problems in Quantum Information, quant-
ph/0504166, http://www.imaph.tu-bs.de/qi/problems/.

[32] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, Symmetric Informa-
tionally Complete Quantum Measurements, J. Math. Phys. 45, 2171 (2004) and
quant-ph/0310075 (2003).

[33] G. Zauner,Quantendesigns – Grundzüge einer nichtkommutativen Designthe-
ory, Doctorial thesis, University of Vienna, 1999 (available online at
http://www.mat.univice.ac.at/˜neun/papers/physpapers.html).

[34] D. M. Appleby,SIC-POVMs and the Extended Clifford Group, quant-ph/0412001
(2004).

[35] A. Klappenecker, and M. Rötteler,Mutually Unbiased Bases are Complex Pro-
jective 2-Designs, quant-ph/0502031 (2005).

[36] M. Grassl,On SIC-POVMs and MUBs in dimension 6, quant-ph/0406175 (2004).

[37] W. K. Wootters,Quantum measurements and finite geometry, quant-ph/0406032
(2004).

[38] I. Bengtsson, and Åsa Ericsson,Mutually Unbiased Bases and The Complemen-
tarity Polytope, quant-ph/0410120 (2004).

84


