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1 Preface

This thesis is divided into two parts. In the first half, welwliéfine and discuss notions
as theHeisenberg grougthecharacteristic functiomnd thewigner functionn the con-
text of finite-dimensional quantum systems. As the purpdski® part is toconstruct
and toexplainthese phase-space related concepts, it is written in a naorative style.
The second part of the thesis aims at contributing to a laagesng open problem in
the theory of stabilizer codes. In order to achive rigoumfal, mathematical style
of presentation has been employed.
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From the Heisenberg Group to
Discrete Wigner Functions



2 Introduction

In Ref. [3] Wigner introduced a representation of hermitigerators on a complex
Hilbert space by real functions aR? to solve a thermodynamical problem. The
Wigner functions associated to density operators havgdreg fantasies of physicists
ever since, because they resemble some features of clgssibability distributions
on phase space and allow for a visualization of quantumssta®eginning with the
work of Wootters [4], the question arose of how Wigner fuoes could be defined for
finite dimensional quantum systems. As any generalizafiarconcept is non-unique,
a whole collection of different proposals appeared in therditure (see for example
Ref. [4, 5, 6, 7, 8, 10]). The question that started of thiskiey can we formulate the
definition of the Wigner function using only terms that havevell-defined meaning
in both the finite and the infinite setting? Candidates fohsuations would bealge-
braic fields Fourier transformation®r vector spaces with formsSuch a formulation
might lead to a somewhat canonic definition of the discrdtgpoihg of the well-known
concept. As a next step one can ask whether such a formufatiditates the under-
standing of the connection of Wigner functions to other ptgsace related concepts,
such as th&Veyl representatigrihecharacteristic functiorof a density operator or the
stabilizer formalismused in quantum information theory.

The preceding paragraph lays down the road map for this first @e will restrict our
discussion to finite systems, but, at each point, it shoulstitzéght-forward to recover
the well-known continuous definitions by substituting fnfields, vector spaces or
Fourier transformations by their infinite cousins.

3 Mathematical Preliminaries

In this section, we will shortly comment on some mathemétioacepts that are not
generally used by physicists.

3.1 Fields

The notion of analgebraic fieldis basic to algebra and there should be no need to
introduce it. Therefore, we will only list some useful faotsfinite fields mostly taken
from Ref. [1].

1. All finite fields have prime-power order. Lét= p" be a power of a prime.
Then there is one unique finite field of ordgm™enoted byF,,.

2. Fields of prime ordep are isomorphic to the familiaarithmetic modulgp of
residue classeg/ (p).

3. Fields of prime power ordet = p" can be constructed sxtendindF,,. In this
casefF, is refered to as thbase fieldof IF,,-. There is a subfield iif,» which is
isomorphic to the base field.

4. If Fq,d = p" is an extension field of,, then theadditive structure oflF, is
isomorphic to the-fold Cartesian product of the base fiéi§). In that sense,



an extension field can be viewed asradimensional vector space over the base
field. Taking that point of view, it is natural to call a subget= { f;},_, . of
F4 abasisif the span ofB with coefficients in the base field is all &f;.

5. Afield iscyclicif every element of F can be written as
a=1+---+1 1)

that is, if its additive structure is a cycle group. Using Bemarks 2 and 4 it is
easy to see that a field is cyclic if and only if it is of prime erd

6. LetlF,;, d = p" be an extension field. The trace operator is defined by
r—1 .
Trf=> f". @)
k=0

The range of the trace is the base field and, furtheis IF,-linear. Therefore,
the function

(f,9) — Tr(fg) (3)

is a bilinear form which can be checked to be non-degeneltateus defines a
scalar product oif; viewed as aiff',-vector space.

7. Let{f:} be a basis of ;. There always exists a sgf’} such that
(fir f7) = o] @

Such a set is called dual basisof {f;}. Self-dual basesglo not always exist.
However, for extensions df-, their existence is guaranteed [1].

3.1.1 Computer Implementation

A set of packages for the computer algebra system Matheanlasis been developed
alongside with the theoretical work in this thésig\t the end of each paragraph, we
will present the computer routines that correspond to thynmtroduced concepts.
These 'Computer Implementation’ sections serve both asples to the abstract con-
cepts and as a documentation of the computer program.

The computer implementation is distributed over a coupl®athematica. mPack-
ages. The primary packagehgsad .m which must be loaded in the first line of any
notebook that uses the library.

In[1]: = <<head .m

Next, load in the finite fields package. It exterddathematica’'sbuilt in finite fields
support.

In[ 2] : = <<finiteFields .m
The package requires the global varialpeandr to be set.

In[3]:=p=3;r=2;

1These packages are available for download at http:/gjipssorg/.



It defines the global variable which represents the extension field of org&rover
Fp.

In[4]:= F

Qut[4]= GF[3,{2,1,1}]

The following lines show how field elements are entered aimttgnt. The format is
explained in the documentation bfathematica

In[5]:= F[{1,0}]
Qut[5]= {1,0};

The natural operations are addition...

In[6]:= F[{1,1}] +F[{2,0}]
Qut[6]= {0,1}3

...and multiplication.

In[7]:= F[{1,1}]F[{2,0}]
Qut[7]= {2,2}3

Unlike MathematicathefiniteFields package supportaixedoperations involv-
ing integers and field elements.

In[8]:= 2F[{1,1}]1 +1
Qut[8]= {0,2}4

The integers are converted to field elements by use of thaifumenf [] (which ab-
breviates 'enforce field’). It is a wrapper Mathematica's=romElementCode [].

In[9]:= enf [2]
Qut[9]= {2,0};

The inverse ofec [] istec [], a wrapper folToElementCode [].

I n[10]: = tec [enf [2]]
Qut[10]= 2

The variabldnv  stands shorthand for the multiplicative inverse of two.

In[11]: = inv
Qut[11]= {2,0},

In[12]:= % FH{2,0}]
Qut[12]= {1,0},

Lastly, the trace has been implemented.

In[13]:= Tr [F[{2,2}]1]
Qut[13]= {2,0};
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3.2 Characters

LetG be afinite abelian group. éharactery of G is ahomomorphism fror& into the

circle groupS?, that is, the set of complex numbers of modulus one with mligation

of complex numbers as the group composition law. The posgwaroduct of two
characters is again a character and — if the inverse is defineg™! := y* — the set
of all characters ofs becomes a group of its own. This group is call@d dual group

and denoted by?. The duality relation is symmetric in that an elementbtan be
viewed as a character 6f by setting

9(x) == x(9) ()
for g € G, x € G. To stress the symmetry between the group and its dual, vie wri
(xlg) = {glx) = x(g) (6)

Finite abelian groups have the pleasant property of besrgasphic to their respective
dual groups. However, in general there isgamonicway of identifyingG with G. In
the sequel we will construct isomorphisiiis— G for some specific examples.

The following fact should be kept in mind:

> Xl gle) = 1G] by 7)

geG

3.2.1 Characters of Finite Fields

If F = I, is of prime order, then
@ Ya() = w® (8)

is an isomorphisnF — I for all non-trivial pth roots of unityw. There is no loss of
generality in choosing = e

If F4 is an extension of ,, then
b— xp(:) := X]Fp(Trb~) (9)

is an isomorphism for all non-trivial characteys, of the base field.

The maps presented in the last two paragraphs are certaimlyp dqjomomorphisms.
The fact that they are bijective (and thus isomorphisms)lmaproven by a simple
counting argument, making use of the fact that the additivectire of finite fields is
abelian and thus isomorphic to its dual.

3.2.2 Computer Implementation

The following definitions of characters for finite fields askén from the package
heisenberg .m

In[14]:= w:=N[Exp[|%]]

11



In[15]: =

In[16]: =

x [X_?FieldOrNumericQ 1 :="Tr [X]

x [X_?FieldOrNumericQ ,y_?FieldOrNumericQ ] :=&"Tr [XY]

The arguments tg can either be elements of the finite fiéldr integers.

In[17]: =
In[18]: =
In[19]: =
Qut[19] =
In[20]: =
Qut[20] =

<<heisenberg .m
glnit  [1, 3]

x[2]
-0.5-0.8660251

x[FI{2}1,2]
-0.5+0.8660251

3.3 Finite Symplectic Geometry

We repeat some facts from the theory of finite vector spacts avsymplectic form.
The standard reference of this section is Ref. [2].

A finite vector spacé/ is calledsymplectidf it possesses a non-degenerate bilinear
form [-, -] which is anti-symmetric

[v,w] = —[w,v]. (10)

ShouldV be defined over a field of characteristic two, then we addiiigrdemand
the form fulfills

[v,0v] = 0. (11)

Given a subspack/ of V, thesymplectic complement - is the set of alb € V such
that[v, m| = 0 forallm € M. M is said to basotropig, if the form vanishes o/,
that is if [my, ms] = 0 for all my, ma € M.

The following assertions hold.

1. Any finite symplectic vector space is even-dimensional.

2. For any subspac¥ of V, M is a subspace df. Further,

dim M + dim M+ = dim V. (12)

3. There always exists a badisi, - - - , pn, ¢*, -+ ,¢"} of V such that

pi,p;] = 0 (13)
[ad] = 0
[piv qj] = 55

A set of that kind is called aymplectic basisThe tuplesp;, ¢*) arehyperbolic
pairs.

4. If M is isotropic thenV/ C M+. The maximum dimension of an isotropic space
is (dim V') /2. A space that reaches this limitigaximal isotropic M is maximal
isotropicif and only if M+ = M.

Symplectic vector spaces will subsequently be referred thase spacedVe reserve
the letterV to stand for phase spaces.

12



3.4 Fourier Transformation and Convolution

Let G be a finite abelian group and Iét'(G) denote the set of all complex valued
functions onGG. Then the Fourier operator @k is defined via

F:LY(G) — LYG) (14)
. 1 -
f) = (ff)(x):ﬁ;f(t)<xlt>-
The inverse is
L 1«
(F ) = ﬁéf(x)@Ix) (15)

Using Eq. (7), it can easily be seen tifab F~! = 1.

There are several mathematical structures that can nigtbealassociated to the set
L'(G) [15]. Obviously, pointwise addition and scalar multiplica turn it into a vec-
tor space, while pointwise multiplication of functions neskit an algebra. There is a
second natural possibility to define an algebra structuré. qid:), namely by using
convolution For two functionsf, g on G, we define their convolution as

(fxg)t)=>_ f(s)glts™"). (16)

seG

The same structure is of course presentbn

The choice of coefficients in the above definition of the Feuniansformation is such
that the transformation becomes isometry Indeed, define the norm of a function
feLYG)tobe

I =" 1f (o) (17)

geqG

and similarly for functions ort, then||f|| = ||f|| (this relation is sometimes called
theParseval formul

There would have been a different natural possibility toas®the pre-factors in Eq.
(14). Indeed, it is easily checked that

Fig) = %f(f) « F(g) (18)

and thusF maps the product algebra éf (G) to the convolution algebra df!(G)
moduloa factor of\/d. In Ref. [13] it is noted that in the definition of the Fourier
transform for functions ofR™ pre-factors can be choosen in a way that maKes-
multaneously an isometry and an algebra homomorphism. #wia the finite setting
there seems to be no elegant means for that. In this documerdpted for preserv-
ing the isometry-property at the price of some factors ifalinulas that make use of
convolution.

The relation (18) is illustrated in the following diagrameWill frequently make use
of such graphic representations in vague resemblanceramutative diagramom

13



category theory. Owing to a bad physicists’ habit, we labelvertices not by objects
or sets, but with 'representative’ elements, suclf asstead ofL.!(G).

If w: G — U(H) is a unitary representation 6f, thenw induces a representation of
the convolution algebra!(G) (see Ref. [15]) by setting, for afi € L}(G),

w(f) =Y fla)w(a). (19)
acG

Indeed, letf, g € L*(G), then

w(frg) = Z(Zf(ab—1>g<b>> w(a) (20)

a€G \beG

= > > f@gb)yw(ab)

b x=ab-1?

- <Zf(x)w(x)> <Zg(b)w(b)>
= b
= w(f)w(g).

As a last remark, making use of the isomorphism (8), we we cate \the Fourier
transform of anf € L(IF) as a function off itself once a faithful character of F has

been fixed: .

fla) = f(xa) = == Y _(xlab)* £ (b). (21)

d belF

3.4.1 Symplectic Fourier Transformation

Consider a symplectic vector spakeover a finite fieldf'. Suppose a charactgrof F
has been chosen.immediately induces an isomorphism frdimto V' via

Xa(-) = x(la,]) (22)

for a € V. Making use of the above relation, we can define a Fouriestoama-
tion for functions onl”, which we will refer to assymplectic Fourier transformation
Specifically, for a vector spadé of dimensior2n over a fieldF of orderd, we set

FR)@) = Fla) 23
= o S balt F )

beV

= W) FO)

beV

14



The symplectic Fourier transformation is covariant untieraction of theSymplectic
Group Sp(F?n):

FFoS)a) = = 3 xab) F(Sh) (24)

beV

= 3 (e ST E)

beV

= —Z [Sa, SS~'b])*F(b)

bev

= S (e b)) FO)

beV

—  F(F)(Sa).

It comes as no surprise, that multiplying a phase spaceifumby a character corre-
sponds to shifting its symplectic Fourier transform

Fx(lv, DF)(a) = dian([a,bD*x([v,b])F(b)

beV

= Y Xl v b F ()

beVv
= (FF)(a—v).

Lastly, the symplectic Fourier transform is self-inverse

FoF=1 (25)
as can been seen as follows:
F(FF)(a) = d2" > x(la,8)* > x(b, ) F(e) (26)
beVv ceV

= S, (e ) F(e)
c,b

1
= > d*6. o F(c)
= F(a).

3.4.2 Computer Implementation

The definition of the symplectic Fourier transformatiomfrbeisenberg .mreads
In[21]:= SFT[f_1[P_, Q] :=

%FSum[Conjugate@ x[P#2 - Q#11f [#1,#2] &, 2]

It is a functinal, that is, the argumerit must be arpure functionin the terminology
of Mathematica More preciselyf must be a phase space function, meaning: it must

15



take two arguments from the finite fielel It can return an object of any type for
which addition and scalar multiplication is defined. In tlexihexamplef will return
real numbers, but later on we will encouter an example of aiEotransform of an
operator valued functional.

I n[22]: = <<heisenberg .m

The functionglnit [ will be documented later.
In[23]:= glnit [1,3]

In[24]:= f =tec [#1] +tec [#2] &;

Our sampld converts its arguments to real numbers useg [] from the package
finiteFields .mand adds them together.

In[25]:= f[F[{1}]1,F[{2}1]
Qut[25]= 3

We will often be concerned with pure functions on phase sysioglar tof ). Some-
times it is convenient to look at all their values at once. Tlhmectionf2a [], defined

in finiteFields .m converts a pure phase space function into an array.
I n[26]: = f2a [f ] //MatrixForm

0 1 2
Qut[26]= |1 2 3

2 3 4

For the sake of completeness, here is the convage[ ]:

In[27]:= a2f [f2a [f1]1 [FI{1}1,F[{2}1]
Qut[27]= 3

Itis time to see howsFT actually works:

In[28]:= SFT[f1[0,0]
out[28] = 6

Alternatively, in the spirit of what has been said before,c@@ look at all values of
SFT[f ] atonce.

In[29]:= f2a [SFT[f][#1,#2] &] //MatrixForm

6 ©1.5-0.866025i -1.5+0.8660251i
Qut[29]= |-1.5+0.866025i 0 0
~1.5-0.8660251 0 0

16



4 The Heisenberg Group

4.1 Motivation

If a quantum system possesses a symmetry, then there shasicheunitary, irre-
ducible, possibly projective representation of the symmyngtoup (see for example
Ref. [11]). Probably the best-known example is the Galyenmetry, that is the trans-
lational and boost invariance of a single free quantizedsrpagnt moving inR™. The
associated classical symmetry group is of colik$e. The unitary irreducible projec-
tive representation dR2" is given by the famougveyl representatiospecified by the
canonical commutation relationgnstead of seeing the Weyl representation as a pro-
jective representation d@& 2", we can perceive the group generated by the operators of
the Weyl representation as an abstract group of its own. Towepgobtained this way

is commonly called théleisenberg groupnd will be defined in this paragraph.

4.2 Definition

Let F be a field not of characteristic two. We define theisenberg grougd (F) ab-
stractly by its composition law

(plaqlatl)(p27qQ7t2) (27)

= (;m +po,q1 + qo,ty +ta + 271 K b >7<P2 )]>

q1 q2

wherep;, ¢; and¢; are elements of and[-, -] denotes thestandard symplectic inner
producton the vector spadg?:
P1 D2
28
(6 ) (%)) @

T
- (2o (2)
q1 q2
L L 0 1
s g (500,

In a physical context theommutation relatiortorresponding to the composition law
(27) is often of interest. It is given by

(plvqlatl)(p27qQ7t2) (29)

= (P2, 42, 12)(p1, 01, 11)(0,0, K g; ) ,< g; )})

The Heisenberg group enters the quantum scene througtieyleepresentatiowhich
maps the group to operators on the Hilbert sp@te whered is the order ofF.
The representation is constructed as follows. Fix a characof F, choose a basis
{|#1),- -+, |¢a)} In H. Define theshiftandclockoperators as

x(q) : or) —  |Priq) (30)
2(p) : lok) = x(pk)|ow)

17



forallk = 1---d. Then the Weyl representation is

w(p, q,t) = x (t — 27 'pq) 2(p)z(q). (31)

We call the image ofv the set ofWeyl operatorslt is easy to see from (27) that two
Weyl operatorsv(p1, q1, t2) andw(ps, g2, t2) commute if the symplectic inner product

(n)(5)] @

vanishes. The converse is true if the charagter faithful (which is always the case if
x is non-trivial andF has prime order, but it can never be fulfilled for extensiolufip
see Section 7.6).

The definition of the Heisenberg group extends naturallyriitefivector spaceB™.
Indeed, if we define

Jp2n = @ T2 (33)
i=1

then the definition (27) makes senseifandg; are elements of””. We denote the
group defined this way by " (IF). The Weyl representation d¢f"(FF) is defined as

(P, q,t) — x(t)w(p1,q1) @ -+ @ w(Pn, Gn) (34)

where{p;}, {¢:} are the components pfandq with respect to the natural basislitt.

It is customary to choose coordinates in the symplecticorespiacer?” by mapping
(p1, 1) @ ®Pn,qn)T tO(P1, -+ ,Pnsq1,- -+, qn)T . We call this conventiofunc-
tion coordinatesas the primary sorting criterion for the coordinates isrtfignction
(i.e. 'momentum’ or 'position’). In contrast, when one is intsted in questions con-
cerning locality, it turns out to be advantageous to sorttw@dinates first according to
the systenthey act on. Thus, in this thesis we will writ@1, ¢1, p2, g2, - -+ » P, @n) "
for the direct sum mentioned above and refer to this nota®system coordinates
For example, in system coordinates, the symplectic mgfrtakes on the form

(50)
<—01(1)> ) . (35)
(%0)

For future reference, we given the action of a Weyl operatoastate vector in co-

ordinates. Letfy) be a state vector ifif with expansion coefficient&e|¢) =: ¥ (x).
Then

(w(p, g, t)) (x) = x(t+px—2""pg)y(z — q). (36)

18



4.3 The Qbit Case

For fields of characteristic two, the definition (27) cannetapplied, as the symbol
2~1 has no meaning in this case. However, there still exists jggiiee representation
of IF defined in an analogous way. Specifically, we set

w(p,q) =1 "z(p)z(q) (37)

for p, g € F, and extend this definition to multiple systems as in Eq. (34 crucial
difference to Eqg. (31) lies in the fact thats a 4th root of unity, as opposed to a 2nd.
The group generated Hyv(p, q)},, , is called thePauli group We will also refer to it as
the Heisenberg group for gbits, even though it does notlfthf#l defining compaosition
law (27). There is a formal analogy leading from Eq. (31) to B8Y). Namely, if the
charactery equalsy(-) = e’d then the non-binary Weyl representation reads

270 (p)a(q) (38)

and Eq. (37) follows by replacirg* by 1, which is the inverse of 2 iiR as opposed
toF.

The composition law for two binary Weyl operators can be &bddo be

2m
d

w(p,q) = e

w(pr, q)w(p2,q2) = w(pr +p2,q1 +q2) (39)
ip1q2—p2m

Z‘(Pl +p2)(q1+g2) mod 4

i~ (P1+p2)(q1+g2) mod 2
which reduces for single systems £ 1) to

w(pr, q)w(p2,q2) = w(p1 +p2,q1 +q2) (40)
jPra2—P2aq1

(_1)P1Q1 q2+Pp29192+p1P2q1+p2p2q1 .
Technically speaking, the Heisenberg group for gbits is aresion ofZ, by F2",
while the non-binary Heisenberg group extefiddy F2".
For future use we define a variant of (37) (compare to Ref.)[20]

T(p,q) = z(p)z(q) (41)
= "w(p, q).

4.4 Computer Implementation

In[30]:= <<head .m
<< gmatrixHead .m

<<heisenberg .m

package gmatrix, version2.2.1

(C) Timo Felbinger (timo@felbinger.net), 1999, 2000, 2001
last modi fied : 20010430.210546utc by : timof@madeus
This package is free software and you are welcome to
redistribute it; typeqmatrix' license for thedetails.

Type gmatrix' helptoget helpon this package.

19



Before we turn to the describtion of the Weyl representatiefined in the package
heisenberg .m let us briefly take a look at the general framework of the pgels.
The system presented here builds on Timo Felbingeriatrix = package [16]. It is
not loaded directly, but instead via the wrapperatrixHead . mwhich defines some
additional functionality.

After the packages have been loaded, every notebook shtautdnsth a call to the
functionglnit []. Itinitializes thegmatrix package to suit our needs. The first
argument specifies how many systems to work with, the secondreent gives the
dimension of their respective Hilbert space.

In[31]:= glnit [2,3]

The subsystems are lablgd to gn.

I'n[32]: = system

Qut[32]= {{gl,q92}}

However, in order to facilitate writting functions that adds different systems auto-
matically, the names of the systems can be entergdvéth the number of the system
given as a subscript.

In[33]:= o,

Qut[33]= gl

Among other useful functions, the packagmatrixHead .mdefines the function

toAbstract  [] which gives a more readable output for state vectors ancatqrsr
in terms of the computational basis.

In[34] : = matrix [{1,0,1}, {ket [ql]1}] //toAbstract
Qut[34]= [0>+i (2>

We go on to introduce the implementation of the Weyl represgem.

Theshift operatorX takes two arguments. First the number of the system it acésidn
second the field element specifiying the shift.

In[35]:= X[1,F[{1}]]

0. 0. 1.
1. 0. 0.
QE[35]= 15" 1. o.

{ket [q1],bra[qgl]}

Alternatively, we can specify the shift by an integer whichi tve converted to a field

element using thenf [] function fromfiniteFields .m
In[36]:= X[1,1]
0. 0. 1.
_|12. 0. o.
Qt[36]= |5 4. 0.
{ket [q1],bra[ql]}

Theclockoperators and, finally, the Weyl operators are defined indhgesashion.

In[37]:= Z[1,1]

1. 0. 0.
0. -0.5+0.8660251 0.
Qut[37]= |4 0. ~0.5-0.866025i

{ket [gl],brafql]}
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In[38]:= W1,1,1]

0. 0. -0.5+0.8660251
Qut[38] = —0.5—068660251 (:: 8

(ket [q1],bra[ql]}
The next step is to look &ivo systems.
In[39]:= qglnit [2,3]

If two List []s are passed td/ then the first list will be interpreted as the momen-
tum coordinates and the second list as the position codetind his agrees with the
convention offunction coordinates

In[40]:= W {0,0}, {1, 2}]

0. 0. 0. 0. 0. 0. 0. 1. 0.
0. 0. 0. 0. 0. 0. 0. 0. 1.
0. 0. 0. 0. 0. 0. 1. 0. 0.
0. 1. 0. 0. 0. 0. 0. 0. O.
0. 0. 1. 0. 0. 0. 0. 0. O.
Qut[401= 11" 5 5. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 1. 0. 0. 0. O.
0. 0. 0. 0. 0. 1. 0. 0. O.
0. 0. 0. 1. 0. 0. 0. 0. O.
{ket [q1], ket [g2],bra[ql],bra[q2]}

Alternatively, if the argument is a singlast [1, then it will be treated as specifying
system coordinates.

In[41]:= W{0,1,0,2}]

Qut[41] =

el NeoNoNoNoNoNoNoe]
[eNeooloNoNaoh o Ne]
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o
—_
oOoPOO0OOCO0OO0OO0OO0OO0O
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o
ToOoorooocooo
gO0o0000o0o0O0R
o
—~ 000000 ORrRO

O000000OFr OO0
o
—_

,Aﬂ
[N
.
=
Q@
o]
=
.
o
=
Q@

Let us test the implementation using two random vectors.

In[42]:= ml=Table [Random[Integer , d], {i ,2n}]

m2= Table [Random[Integer , dl, {i,2n}]
Qut[42]= {1,3,3,2}
Qut[42]= {1,3,1,2}

Their symplectic inner product can be computed as

In[43]:= symp[ml, m2]
Qut[43]= 4

Therefore, the following line tests whether the Weyl oparsfulfill the composition
law of the Heisenberg group.

In[44]:= Wm1] * *Wm2] == x[invsymp [m1, m2]] Wml+m2]
Qut [ 44] = True
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The second argument tetignit ~ which field to use. If it is an integqy, the package
assumes that is a prime and uses the fie@®F[p] (see theMathematicadocumenta-
tion). Else, one can supply aligp, r }. In that case, the extension fieBF[ {p, r } ]
is used.

In[45]:= qglnit [2, {3,2}]

In[46] := F

OJt[46]= G:[3, {2,1,1}]

In[47]:= X[1,1]
0. 0. 1. 0. 0. 0. 0. 0. O
1. 0. 0. 0. 0. 0. 0. 0. O
0. 1. 0. 0. 0. 0. 0. 0. O
0. 0. 0. 0. 0. 1. 0. 0. 0

~lo. 0. 0. 1. 0. 0. 0. 0. ©

Qtl471= 15" 9. 0. 0. 1. 0. 0. 0. O
0. 0. 0. 0. 0. 0. 0. 0. 1
0. 0. 0. 0. 0. 0. 1. 0. 0
0. 0. 0. 0. 0. 0. 0. 1. ©
{ket [q1],bralql]}

In order to increase the performance, the Weyl operatorsaried That means, the
first call toW ] computes the matrix and stores the result for subsequenilinsze-
fore, if one works in large dimensions, the first calMip] might take notablely longer
then later ones.

In[48]: = gnit [2,13]

In[49]:= Timing [W{1,1}, {1,1}1:1]
Qut[49] = {0.18 Second, Nul | }

In[50]:= Timing [W{1,1},{1,1}1:1
Qut[50] = {0.06 Second, Nul | }

4.5 The Role of the Symplectic Group

This section is devoted to the study of the automorphismiefHeisenberg group. In
the following, we write elements d"(F) as(a,t) fora € V.

Lemma 1 Let« be an automorphism df”(FF) for some finite field&. Thenq is of
the form
ala,t) = (Aa), T(a,t))

for two functionsd : F — F andT : F x F — F. Further, A andT are compatible
with addition in[F, that is,

A(a+0b) = A(a)+ Bla)
T(a+b,t) = T(a,t)+T(b,t)
T(a,s+t) = T(a,s)+T(a,t).
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Proof. First, note that any automorphism maps the center of a gmthetcenter. The
centerZ(H™(F)) of the Heisenberg group is the set

{(0,0)}yer
as can be seen easily from Eq. (27). Thus
a(0,t) = (0,7(0,t)).
It is obvious that functionsl and7" exist such that
ala,t) = (A(a,t),T(a,t)).
But, using the remarks above, we find that
(A(a,t),T(a,t)) = ala,t)

= aof
a

o

(a,0) < (0, ))
= a((a,0)) o a((0,
(a,0)
(a,0)

A
Ala

a,

T'(a, )) (0 7(0,t))
T(a,0) + T(0,t))

(
- ( ’ ’

which shows that
A(a,t) = A(a,0)

proving the first claim of the lemma. To see that the seconertisa holds, write

a((a,0)0(b,0) = (Ala),t1) o (A(D), b2
= (Afa )+A( );t3)

where the; are some unimportant phases. Simultaneously, it is true tha

a((a,0)o(b,0)) = ala+b,ty)
= (A(a+Db),t5).

Comparing the last lines of the preceding two formulas, @®s shat
A(a+b) = A(a) + A(D).

Turning toT', we already know thdf'(a, b) = T'(a,0) + T'(0, b) so it suffices to show
the compatibility ofT'(-, 0) and7'(0, -) with addition inFF, which is done along similar
lines as forA. 0

Note thatA(a + b) = A(a) + A(b) is in general not sufficient to conclude thatis
F-linear, becausd might fail to be compatible witlscalar multiplicationby elements
A of F: A(Xa) # AA(a). However, if the fieldF is cyclic, that is, if every element
can be written as

A=1+4-+1 (42)
then
A(da) = A((1+---+1Da) (43)
= A(a+---+a)
= A(a)+ -+ Aa)
= M(a)



and linearity ofA follows. By Remark 5 in Section 3.1, a field is cyclic if and wiflit
is of prime order. For the sake of simplicity, we will now néstour attention to cyclic
fields. We’ll comment on the general case in Section 7.6.

There are a couple of automorphism groupdf(FF) which can be identified by in-
spection. We list three of them, slightly adapting an enatien from Ref. [13] to the
finite case.

1. LetS € Sp(V') be asymplectic mapThen
(a,t) — (Sa,t) (44)

is an automorphism off. Denote the group of all automorphisms of this form
by Gi.

2. G, denotes thénner morphisnthat is, mappings of the form

(a,t) - (a, ). (45)

3. The group ofdilationsé(r),r € F* with composition laws(r)5(s) = d(rs) is
defined to act od{ ™ (F) by

d(r)(a,t) = (a,rt). (46)

F* is the set of non-zero elementslin Dilations can be checked to be automor-
phisms and are jointly denoted 6¥;.

Theorem 2 ([13]) Any automorphism: of H™(F), for cyclicF, can be written as
= 10203
whereq; € G;.

Proof. Using Lemma 1 the proof of Theorem 1.22 in Ref. [13] can eds#yadapted
to the finite case. 0

It is now natural to ask which of the automorphisms can beesgmted by the action
of unitaries on the Weyl representation. That is, for whigchset of the automorphism
group exist unitary operatof$(«) such that

Uw(a,t)UT = w o afa,t) 47)
or, weaker, if we allow for a 'projective action’, for whiel can
Uw(a,t)UT = e'®aw o afa,t) (48)

be fulfilled?

Firstly, since the center of the Heisenberg group is mappeaiitiples of the identity
operator
w(0,t) = x(£)1 (49)
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the center must be pointwise invariant under the action @érias by conjugation. It
follows thatG's cannot be implemented within the framework of the Weyl reprga-
tion.2 Hence, all admissibles must be elements @f;G>. Now, G-, has an obvious
operator representation: the conjugation by elemenfg’dotorresponds of course to
conjugation by Weyl operators. The case(®f is not as easily decided. In the case
F = R, the statement that all symplectic mappings have an opergpoesentation
acting on the Weyl group is the famous Stone-von NeumanroiEme. For finite
explicit constructions for a mapping: Sp(V') — U(H) are known such that

w(S)w(a,t)u(S)" = eew(Sa,t). (50)

Refer to Ref. [12] for the case of odd characteristic and tb R20] for fields of
characteristic two. The mappingwhich turns out to be a projective representatioh
Sp is sometimes called thmetaplectic representation

For the rest of the Section we will pursue the question of vaaat be said about the
phases'?« that appear in Eq. (48).

The composition law of the Weyl representation is of the form
w(a)w(b) = f(a,b)w(a +b) (51)

fora,b € F and a functiory : F x F — C. In the language of group extension theory,
the functionf is afactor systemThe explicit form off is given by the formulas (27)
and (39) for non-binary and binary systems respectively.

Now let U be any unitary operator that maps Weyl operators to mustiple\Weyl
operators under conjugation:

Uw(a,t)UT = e'®2w(Sa). (52)

In the context of quantum information theory, such opesatoe callecClifford opera-
tions Because conjugation by unitary operators preserves thiglioative structure,
S must be an automorphism of the Heisenberg group. Becaugestthie centel§ is

symplectic by Theorem 2.

Definec(a) := e'*=. We have on the one hand

Uw(a)UTUwb)UT = w(Sa)w(Sb)c(a)e(b) (53)
= f(Sa,Sb)w(S(a+ b))c(a)c(d)

and on the other hand

Uw(a)UTUw®)UT = Uw(a)w(b)UT (54)
= fla,b)Uw(a+ b)UT
= fla,b)w(S(a+b))c(a +b),

which together yields

f(Sa,Sb)  c(a+D)
f@b)  cla)ed) (55)

2However, if one allows foanti-unitary operators, thed(—1) can be represented [34].
3In the case of finite fields of odd order,can be chosen to be a non-projective representation [12. Th
fact will however not play a role in this document.
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For every symplectic mapping, the condition (55) determinesmodulo a character
of V. Indeed, leU/ andV be unitaries such that

Uw(a)U' = cy(a)w(Sa) (56)
Vw(a)VT = ey (a)w(Sa).

Define a 'difference functiors by ¢y (-) =: ¢y (+)d(+), then

cy(a+0b)  f(Sa,Sb)  cy(a+Db)
@er ()~ @b @) 7)

cv(a+b)  cy(a+b)o(a+0D)

T a@er(®)  ev(a)er (5)3(a)5(0)
da+b) i
< Sap)

Looking again at Eq. (55) we see that the phasgsviate from being a character 6f
if and only if the factor sef fails to be invariant under symplectic operations.

If F is not of characteristic two, then

f(a,b) = x(~27"[a,0]) (58)

and thusf(a,b) = f(Sa, Sb) becauses is symplectic. We conclude thatmust be a
character of/. But then there is a vectarc V' such that

c(+) = x([v, ). (59)
DefineV := Uw(—wv). It holds that

Vw(a)Vi = Uw(—v)wla)w(—v) U (60)
= c(a)*Uw(a)UT
= w(Sa)

for all a € V. We conclude that the mapping: Sp(V) — U(H) can be chosen
such that Eq. (47) is fulfilled, that is, no phase facioeppear. The discussion of the
unitary automorphisms of the Weyl operators for non-birsgstems will be continued
in Section 7.2.

For gbits however, the factor system cleary fails to be iadrunder the action of
symplectic mapping§ as can be seen from Eq. (39). All that can easily be establishe
about the phaseg-) is that they must be real, for binary Weyl opeators are hémit
and conjugation by unitary operators preserves hernyiti§iv, by use of Eq. (55) we
have in general

cla+0)

c(a)c(b)
There is thus no canonic way of choosjn@) as was the case for non-binary systems,
where a specific representatip(S) was singled out by the property that it allowed for
atrivial c(+).

= +1. (61)
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4.5.1 Computer Implementation

In[51]:= <<head .m
<< gmatrixHead .m

<<heisenberg .m

package gmatrix, version2.2.1

(C) Timo Felbinger (timo@felbinger.net), 1999, 2000, 2001
last modified : 20010430.210546utc by : timof@umadeus
This package is free software and you are welcome to
redistribute it; typegmatrix' license for the details.

Type qmatrix' helptoget helpon this package.
In[52]:= glnit [1,3]

Define any symplecti2x2 -matrix.

In[53]:= (S={{2,1}, {1,1}}) //MatrixForm

Qut [ 53] (i 1)

mu[ ] returns the metaplectic representation of its argumentveyer, it works only
for single systems. It is based on a formula by Vourdas.

In[54]:= B=pu[S]

0.-0.577351 -0.5+0.2886751 -0.5+0.2886751
0.5+0.2886751 -0.5+0.2886751 0.5+0.2886751
0.5+0.2886751 0.5+0.2886751 -0.5+0.2886751
{ket [g1l],brafql]}

Qut [ 54] =

Test the representation.

I n[55]:
out [ 55]

u[S] * *W{1,0}] % xhc [u[S]] == WS.{1,0}]
True
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5 Non-Binary Stabilizer Codes

We now consider the image of entire subspate®f F2" under the Weyl represen-
tation. The setv(M) consists o™ operators, which commute mutualyif is
isotropic. In that casey| M is a representation df/ viewed as an abelian group. As a
consequence of Schur’s lemma, this representation deczespbe Hilbert space into
an orthogonal sum of one-dimensional subspaces, eachantvanderw|m. Indeed,
w acts on each of these subspaces elsaaacterof M. If k£ denotes the dimension of
M, it can be shown, that thé® characters of\/ occur with equal multiplicity [19] in
the decomposition ab[ A/ and thus each character is connectedit &-dimensional
subspace of the Hilbert spage

The space defined in this way by an isotropic subspgd@nd a charactey : M — S*!

is thestabilizer codeassociated td/ andy. The projection operator onto this space
will be denoted ag(M, x). In the special case that is maximal isotropic, the code
becomes one-dimensional and hence singles out a ray inrtib@ce. Modulo phases,
this ray corresponds to a state vector which we refer tflasy). We write p(M)
shorthand fop (M, 1) wherel is the trivial character, sending all elements\éfto 1.

An isotropic subspace can be specified by a basis, - - - , m; }. The characterin turn
is fixed, once we know its valugs¢(m;), - - - , x(my)} on the base vectors. The base
vectors can be gathered together asablemnsof a matrix, which is called thgener-
ator matrixof M (this is because the images of the base vectors undgmeratehe
stabilizer group). We denote the generator matrix of a satxspvith the correspond-
ing calligraphic letter. Note that we are still using systemordinates and thus, in the
generator matrix oft/,

mi1 v min
M = : : (62)
manp1 - Man,n
two consecutive rows belong to one system.

Given M, y, the mapping

m — x*(m)w(m) (63)
is a another faithful representation f in . The set
{(X*(m)w(m)}ens =2 S(M, x) (64)

is thus an abelian group, called ts&bilizer groupassociated to the given data.

There is an explicit formula for the projection operatoramatstabilizer code:

p(M,x) 7 X" (m)w(m) (65)

Indeed,p defined as above can be checked to be idempotent, self-adjarfurther,
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form’ € M,

I
£
3

w(m’)p(M, x) = > x(m) w(m) (66)

= = > x(m)x (m)w(m)

= x(m')p(M,x)

and thusw|[M acts as the multiplication operator lyyon rangép).

It follows that a state vectdr)) belongs to the stabilizer code associatedftoy if and
only if
X (m)w(m)|y) = 1) (67)

forall m € M. In other words:|+)) is a common eigenvector of all elements of
the stabilizer grou' (M, ) to the eigenvalue 1. This fact is sometimes taken as the
definition of stabilizer codes [26].

It is easy to see that for all characteys ¢ of M, there is a Weyl operator map-
ping p(M, x) to p(M, €) under conjugation. Since the Weyl operators are local (see
Eq. (34)) any two stabilizer codes belonging to the samedpat subspace are local
Clifford-equivalent.

5.1 Qbit Stabilizer Codes

In the non-binary casey (M) provided a faithful representation of an isotropic vec-
tor spacel . For two-level systems, things are more complicated becthesbinary
composition law (Eq. (39)) introduces phase factors eveenitivocommutingVeyl
operators are composed. This will caus@\/) to be closed under composition only
modulo phases. However, once a basis has been choosen Wiittimese phases can
be fixed by the following construction. L¢in,}, be a basis of an isotropic spate.
Choosedim M numbersy(m;) € {+1,—1}. Every elemenin € M has a unique
decomposition

m = Z CiMyg. (68)
The operator

S(m) == HCiX(mi)w(mi) (69)

is well-defined, because the(m;) commute (forM is isotropic). Thus the stabilizer
group associated to the sg¥/, {m;},, x} can be defined as

S(M, {mi}, x) :={S(m)|m € M} (70)

and the corresponding stabilizer cod@/, {m,} , x) is the the set of common eigen-
vectors of the operator$(M, {m;}, x) to the eigenvalue 1.
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For the sake of simplicity, we defirff M) to beS (M, {m;}, 1), where the vectors;
are the columns of the generator mattt. Thusp(M) is well-defined in the binary
case whereelsg()M) is not.

For subsequent use, define the functiom) implicitely by the relation

S(m) = s(m)x(m)w(m). (71)
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6 The Characteristic Function

6.1 The Integrated Representation

The Schrodinger representatin of the Heisenberg groupesla representation of the
convolution algebrd.; (H™) as in Eq. (20)

Ly(H") 3 fw(f) ==Y f(p,q,)w(p, q,1). (74)
P;q,t
Following Ref. [13], we callv( f) thelntegrated representation

The Integrated representation is not faithful. Indeedy @me Fourier component of
f(p,q,t) with respect ta contributes to the operatar(f).

Proof. [13] We write F3 for the Fourier transformation operator with respect to the
third argument of a function. Further, Igtbe the character used in the definition of
the Schrodinger representation, that is,dte such that

w(p,q,t) = w(p, q)(x|t).
Definingf = F3f and inserting the identity
fat) = (F5'Hpa.t)

Z (P 4, C){tIC)

¢

/\

into the definition of the integrated representation, wetkat

w(f) = Z%Zﬂp,q,o<t|<>w<p,q><x|t>

p,q,t

= Zpr,qC 1/QZCIt (xIt)
= ZZf p.q,Q)d"?6¢ -
pq
= Vd)_ fp.a.x")
p.q

which proves the assertion. 0

Given a functionF on F2", we can lift it to a function on the Heisenberg group by
setting
(Lo F)(p,q,t) := ¢(p, )x"(t)d~*/>. (75)

The integrated representation now naturally extends tegbpace functions dff”
as

w(F) = w(lode) (76)

> F(p,q)w(p,q)

where the last identity can easily be checked.
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Recall, that in Eqg. (20) we have seeen that the Integratedseptation is compatible
with convolution in the sense that

w(f *g) =w(f)w(g) (77)

for f,g € L1(H™). Itis now natural to ask how the lifting procedure introdd e the
last paragraph fits into this framework. To this end,Het: be phase space functions.
Then

(LF) + (IG)(p, g, t) (78)
= 2 > FW. X ()G —pa— )t —t =27 (=27 (g — 'p))
= é X =X (1) F@, )G —p,q—d )X (=27 (g —d'p)
= XY F@.¢)Gp—1.q—d ) 2 (pd —ap)
. I(F1G),

where we have defined thwisted convolutiofl3]

(F1@)(pg) =Y FW )G —p q—d)x 2 (v —ap)).  (79)

Comparison with Eq. (77) shows that

w(F4§G) = w(F)uw(G) (80)
for phase space functio#$andG.
The following diagram symbolizes these relations.

(F,G) " . Fhc
! !
(IF,1G) IF G
w w

(w(F),w(G)) — w(F)w(G)

6.2 Inverting the Integrated Representation: The Characteistic
Function

The Integrated Representation associates an operatootopex function on the vec-
tor spaceF?™. This mapping is one-to-one and can easily be inverted. Mpkse of
the fact that

tr(w(p, q)) = d"0p,004,0 (81)
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and the group law (27) one finds immidiately that the Weyl ajians form an orthonor-
mal basis with respect to the Hilbert-Schmidt inner prodﬁctr(-, -). We identify the
phase space function in Eq. (76) as the expansion coeffgoigtit respect to this basis
(modulo normalization). The relation

1
F(p.q) = = tr(w(p, q)'w(F)) (82)
follows.
The phase space functidnis called thecharacteristic functiorof the operatotv(F).

Because the Weyl operators form an orthonormal basis, aeratgr has a characteris-
tic function which we will denote by

=(4)(p,0) = Za(p,0) = - tr(w(p,)'A) 83

for a general operator A.

(F,G) Fpa

g
o
[1]
g

(w(F),w(@)) — w(F)w(G)
We list some properties of the characteristic function.

1. (Symplectic Covariancd)sing the results from Section 4.5 one immediately

gets
_ 1
Eus)aps)t(a) = i (w(a)'u(S)A u(S)")

— din tr (1u(S) w(a)tp(S)A)

_ din tr (w(S~a)t A) cs-1 (a)
= EA(S71Q)03*1 ((1),

wherecg-1(a) equalsl in the case of non-binary system and is else given by
Eq. (55). It is hence justified to call the characteristicdiion symplectically
covariant

2. (Translations)With the help of Eq. (29), we see that
— 1
S (b) Aw(b) T (a) = a tr (w(a)Tw(b)Aw(b)T)

= tr () (o) w(5)4)

= di"X([@,b])* tr (w(a)’4)
— x([a.b)" Eala).

Thus conjugation by Weyl operators corresponds to muitiglyhe characteris-
tic function by acharacter
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3. (Adjoint Operators)

Zafa) = o tr(w(a) A7)
= Z%; tr(Aw(a))*
= dintr(w(fa)TA)*
= Zu(-a)".

Observe, that the matrix elements4fullfil the same relation.

4. (Trace)

tr(A)

I
=
1 /P?
[1]
hS
&
g
&
~

5. (Hilbert-Schmidt scalar product)

din tr(ATB) = (Ex14Zp)(0)

where in the last line, we have definedaalar productfor complex phase space
functions

EaZp =) Zi(a)Es(a) (84)

a

6. (State Vectors)et |¢) be a state vector ifit with coefficients(z|y) = ().
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Then

() WNp ) = o trCw(—p, —a) ) ()
= tr(w(p,~a) 9 ()

- Wl o)
_ din > (@) x (=27 pg)x(pr)(x — q)

zelfn

= din > x(=27'pg+py+2719)
yle=y+2-1q
Yy +27"9) Py + (27" = 1)g)

= din > xpy)vly +27 ) vy — 27 1)

where we have used the fact that
2t -1)(-2)=-142=1.

and hence~! —1 = (-2)"%L

6.3 Computer Implementation

In[56]:= <<head .m
<< gmatrixHead .m

<<heisenberg .m
In[57]:= qglnit [1,3]
Define some operator.

In[58]:= wl=W{1,1}]+0.75W[{0,1}]

0. 0. 0.25+0.8660251
_ |0.25-0.866025i 0. 0.

Qut [58] = ( 0. 1.75 0

{ket [g1],brafql]}
characteristic [1 computes its characteristic function.
In[59]:= (cl = characteristic [wl] ) //MatrixForm

0 0.75 0
Qut[59] = (0 1. 0 )

0 0 0

Take any second operator, for example a projection operator
In[60]:= 9 =matrix [{1,0,0}, {ket [q1]}]

1.
(o_
0.
{ket [q1]}

out [ 60]

In[61]:= w2=y % xhc [¢]
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1. 0. o.
0. 0. 0.
Qut[61] = (0. 0. o0. )
{ket [g1l],brafql]}

In[62]: = (c2 = characteristicSave [w2] ) //MatrixForm
1

0 0

_ 3
Qut[62] = (0.333333 0 0
0.333333 0 0

Thetwisted convolutiomf the two characteristic functions can be computed. It &hou
be compatible with operator composition.

In[63]:= twist [cl,c2] == characteristic [wl % *wW2]
Qut[63] = True
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7 The Wigner-Transformation

7.1 Definition

We define the Wigner function of an hermitian operatdo be the symplectic Fourier
transform of its characteristic function:

W :=Fo&. (87)

Conversely, by inverting Eq. (87), one can associate anabgeto a phase space
function: 3 3

Q=W 'l=g"1loF l=woF. (88)
In the continuous case, the preceding relation is known @$\ikyl correspondance
[13].

0
£
3

[1]

Let us explore the consequences of the definitions. Contiderase = C"¢,d =
p",V =TF?%". For the Wigner function we have for alle V/

Wala) = W(4)a) (89)
= FZala)
= o Xl b tx(w(d) 4)

beVv

_ din r <(din S ([, b)) w()) A) .

bev

The above function leads naturally to the definition of ph@se space point operators
(see Ref. [9])

1
= * t
Ala) = — > x([a, b)) w(b)". (90)
bev
We establish some properties of the phase space point operat

1. Phase space point operators are hermitian.

Ala) = =3 x(lab)u®)
b
= >l ) w(-b)
b

= (b w)
b
= )
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where the line next to the last one is justified since the surgea over a vector
space.

2. Phase space point operators have unit trace.

to(Buvar)

- d—n > et e

= —_— dn
dn
= 1

tr A(a)

3. Phase space point operators form an orthonormal basisesipect to the Hilbert-
Schmidt inner product.

1 1
(Al @A) = d—ntr<A<a>A<b>>

= d3" ZX a, c])*x([b, d])* tr(w(c)w(d))
= dznZX a,c])* x([b,d])"d. -

= dQ_" ZX([aa C])*X([bv C])

2n
= d%d Sa
= 5a,b

4. The sum over all phase space point operators is a multiple anity.

S A@ = = S Xl i
a a b
- d%z(zxqa,b]))wb
b a

1
= d—ng d2”5b10w(b)
b

d"w(0)
= d"1.

7.2 Properties

From the properties of the phase space point operators, welede immediately
an interpretation of the Wigner function of an operator:ivteg the expansion coeffi-
cients of that operator in terms of the orthogonal basis afplspace point operators.
Because the latter are hermitian, the Wigner function ofraniten operator is real.

38



Further properties:

1. (Symplectic Covariancé)sing the symplectic covariance of the symplectic Fou-
rier transformation (24) and of the characteristic funct{84), we get for the
case of non-binary systems

Wasyus)t (@) = (FEus)Bucs)t)(a) (91)
= (F2p)(S~ta).
= Wpg (Sila).
In the gbit case, the phasegs, are in general non-trivial. Here, the Wigner
function looses its covariance under Clifford operations.
If, in the gbit case, the phasess) are non-trivial, the Wigner function looses
its covariance under Clifford operations.

2. (Translational CovarianceYhe Wigner function is also covariant under phase

space shifts:
Wawmsuwr (@ = (FO(0) E5()) (a) (92)
= (F25)(@-b)
= Wg(a—0),

where we have made use of Eq. (25).

3. (Trace)

tr(B) = tr <ZWB(a)A(a)> (93)

4. (Hilbert-Schmidt scalar product)et B andC' be hermitian.

! Y Wa()AD) Y We()Al)  (94)
b c

= S WaO)We(d) 7 t(AB)A)
b,c

= Z WB (b)WC (C)(Sb,c

b,c

= ) Ws®)We(b)
b
= WB-WC-

The last line uses the phase space scalar product defined i(8&q Note the
difference in normalization as compared to the standardiplsys’ convention
for computing expectation values.
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We can now analyze to covariance properties of the Wignectiom. To this end,
consider an affine transformation &n

vi— Av+ a (95)

for someA € GL(V) anda € V. We denote the set of elementsft(V') whose
linear part’ A is symplectic bySpAff(V). SpAff can be checked to be a subgroup
of Aff, or, if one wishes, to be semi-direct producof Sp(V') andV. We define a
mapping fromSpAff (V') to U (H) by

A-+ar— wla)u(A). (96)

No confusion should arise by denoting the above map tas well. Note, that this
designation is compatible with the special case 0. Now,
(A-+a)o(B-+b) = AB-+b)+a (97)
AB - +(Ab+a)
while
(w(a)u(A)) (wb)u(B)) = w(a)u(A)w(b)u(B) (98)
= w(a)u(A)w(b)u(A) u(A)u(B)
= w(a)w(Ab)u(A)u(B)
x  w(Ab+ a)u(AB)

and thereforq: is a projective representation 8pAff(V'). The group generated by
the image ofu is sometimes referred to as tlacobi group[21]. Combining the
symplectic and the translational covariance of the Wigoacfion, we see that if

B = (A - +a)Bu(A-+a)t (99)
then

WB/ (’U) = WB (A_l’l} - A_la). (100)
& Wpi(Av+a) = Wa(v).

It is in this sense that the Wigner function is covariant urttie action of the affine
group ofV.

7.3 Wigner Functions of Stabilizer Codes

Recall from Section 5 that a projection operator onto a Btaicode associated with
the isotropic spacé/ and the charactercan be obtained by the sum

p(Mx) = = 3 ¢ myu(m) (101)

meM

Because» — x([v, -]) is an isomorphism into the character groufFothere always is
av € V such that

¢() = x([v,]) (102)



for any given charactef. Now, obviously,

x([v,m]) = x([v',m]) (103)

for all m € M if and only if v’ — v lies in the symplectic complement/+ of M.
Hence, there is a one-one correspondence between charafciérand

V/M*. (104)

Becausé\/* is a vector space, the quotient above isffime spaceln the special case
that M is maximally isotropicM+ = M and

V/M*+ =V/M. (105)

We see that instead of using the ddt¥/, (}, we can specify a stabilizer code by
{M, v}, wherev is an element of’/M L. In that sense, stabilizer codes can be thought
of as affine spaces with directional vector spddeand base point. The Wigner
function representation of stabilizer states turns outtadmpatible with that point of
view. Indeed, we see that

Eympy(a) = d"% Z X([m, v])* tr(w(—a)w(m)) (106)
meM

1 .
= %X([Q,U]) 61”(0’)7
whered ), is theindicator functionof A/ defined to be

Further,

(Fomla) = 5 3 x(aml)’ (109)
1
= Zu|Mloy(a)
= Oy (a).

Hence, making use of the results of Section 3.4.1,

1
Wp(M,v) = ﬁ 6]\/IL+U (109)
and in the special case of stabiliztates
1
Wonw) = o OM+v- (110)

7.4 Marginal Probabilities

We shortly comment on how the above results on stabilizees@dn be used to de-
scribe the computation aharginal probabilitiesin phase space. For a more detailed
presentation of the topic and how it relategjteantum state tomographsee Ref. [9].
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In the caser = 1 of a single system, the Wigner function of a stabilizer statthe
indicator function of a one dimensional affine space, thdt is a line in phase space.
Now consider the Wigner functioi¥,, of some density matrix and let\ be some line
in phase space. Using Eg. (94) and Eq. (110), itis clear that

S Wo(a) = tr(op(V)) (111)

a€EX

wherep()\) is the stabilizer state associated to (the affine spade)the sense of the
last section.

As a particular example, look at the lines parallel to the rantam axis, displaced
from the origin by the offsej

{) (e} e

P(Ag) = lg)(dl (113)

and thus, the sum of the values of a Wigner functitp over the points of the line
A, is the expectation value df)(g| with respect to the state. The same procedure
can be repeated for any set of parallel lines in phase spamenifg a perfect analogy
to the computation ofmarginal probabilitiesof a classical probability distribution on
phase space.

Itis easy to see that

7.5 Computer Implementation

In[64]:= <<head.m
<< gmatrixHead .m
<<heisenberg .m
<<someStates .m
In[65]:= glnit [1,3]

Let us look at a computational basis state (or 'positioneeggtate, if one wishes) in
dimension three.

In[66]:= 9 = posEigenstate [1,1];

In[ 67]: = Chop@posEigenstate [1, 1] //toAbstract
Qut[67]= 1. 10>

wigner []computes the Wigner function of a given state vector or dpera

I n[ 68] : = wigner [y % xhc [y]] //MatrixForm
0.333333 0 O
0.333333 0 O
0.333333 0 O

out [ 68] =

However, most of the times we are interested in a visual sgmtation. The func-
tion Visualize  [1is a powerful wrapper for several visualization methods.’llWe
comment on it soon.
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I n[ 69]: = Visualize [y]

Qut [ 69] = - Graphi cs3D

The functionA[ ] returns a phase space point operator. The first argumerifispélce
system it acts on, the second argument the phase spacetpm@tarigs to.

In[70]: = A[1,0,0]

1. 0. oO.
0. 0. 1.
t[701= |0 | o
{ket [q1l],bra[qgl]}

The following definition is taken fronmeisenberg .m It shows how to use the
Fourier transformation function on operators.

In[71]:= ALi_ ,€_,x_1 :=Ali ,£,Xx] =SFT[Wi , #1,#21&]1 [£,X];

A phase space point operator’s Wigner function is sharphceatrated in both position
and momentum space.

In[72]: = Visualize [A[0,0]]
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Qut[72] = - Graphi cs3D
However it does not represent a physical state becauseadt & positive operator.

In[ 73] : = eigenvalues@A [1,0,0]

Qut[73]= {-1.,1.,1.}

The wrappeWisualize  [] comes with several options.

I n[ 74] : = Options [Visualize 1]

Qut[74] = {Styl e~ BarChart, Centered - True, Synbol Met hod -~ wi gner , | nageSi ze »
200}

If we turn of the centering option, then the origin of the phapace will be placed at
the lower left corner.

In[ 75] : = Visualize [A[0,0], Centered - False ]

Qut [ 75] = - Graphi cs3D

For more complex situations, the bar graphs are hard tqorgerA 'flat’ representation
turns out to be more advantageous.

In[76] : = Visualize [A[0,0], Style - Density 1]

0
0 05 1 1.5 2 2.5 3
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Qut [ 76] = - Densi t yG aphi cs-

Visualize  [] is notlimited to Wigner functions. Any function that turnseperator
into a 2-D matrix can be specified as an argument t&SyrabolMethod option.

In[77]: = Visualize [A[1,0], SymbolMethod - (Chop@Rédcharacteristic [#11&)]

Qut[77] = - Graphi cs3D

If one wants to look at many transforms simultaneously, theswArray [1 offers
some space savings.

In[ 78] : = DrawArray [A[O0,0], Wi {1,1}] » *A[0,0] * xhc [W {1,1}111]

Let us check the covariance properties under the actioneofdbobi group.

In[79]:= (S={{1,1}, {1,0}}) //MatrixForm
11
autrol= [} g |

In[80]: = DrawArray [¢, u[S] * %, WL{0, 1}] # »p, WM {0, 1}1 » #p[S] » *p, 2]
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0.
0

0.
0
0

0. .
0.

. 0.
1 0.1

In[81]:= glnit [2,3]

0.
0.
1 0.1
1 1
2 2
3 3
1 1
2 2
3 3

Here is an example of a two-particle system.

In[82]: = Psi =posEigenstate [1,1]xxposEigenstate [2, 1]+posEigenstate [1,2]=*
xposEigenstate  [2, 2] + posEigenstate  [1, 3] » xposEigenstate  [2, 3] ;

I n[ 83]: = Chop@Psi //toAbstract
Qut[83]=1.]00>+1. |11 >+1. (22>

I n[ 84] : = WignerDraw [Psi ]

Qut [ 84] = - Graphi cs3D
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The 4-D phase space is flattened out using a 'first-systemrpsagjcond system minor’
approach as will be exemplified below.

I n[ 85] : = SetOptions [Visualize , Style - Density 1;

I n[ 86]: = DrawArray [A[1,0,0] » *W2,0,0]1,W1,0,0] » *A[2,0,0]]

N B O
N B OO

o
o

0 2 4 6 8 0 2 4 6 8

In[87]:= DrawArray [A[1,0,0]%%A[2,0,0],A[1,0,1]1%%A[2,0,0],A[1,0,0]1%%xA[2,0,1]1]

O N b OO
S N b O O
O N b O

2 4 6 8 2 4 6 8 2 4 6 8

Consider, for example, the (vertical) position axis. It hase points where three con-
secutive points correspond to a fixed value of the positi@rdioates of the first sys-
tem.

7.6 The Case of Extension Fields

Let us take a look at the one-dimensional Heisenberg growgmaxtension field =
IF,~. According to Section 3.1 it is possible to find two bages, {e’} in F which are
dual to each other in the sense that

Tr(eje’) = &7, (114)
Adopting Einstein’s summation convention, we can writex@atsp, ¢ of IF in terms

of these bases as

p = pie’ (115)
q=q'e; (116)

where thep; and¢' are elements of the base fieR}. Further, we know that the
charactery used in the definition of the Heisenberg group is of the form

x() =t (117)
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for somea € IF. Because the trade,- — I, is never faithful, the Weyl representation
Eq. (31) cannot be faithful in the case of a Heisenberg graugp an extension field.
It is thus natural to define theeduced Heisenberg groul(F) asF x F x [, with
composition law

/
(p.a. )P d t')=(p+p,q+d t+t' +27 " Tra K Z )( Z’ )}) (118)
The function

H(F) — h(F) (119)
(p,q,t) = (p,q,Trat)

can be checked to be a group homomorphism. Further, it is tlaathe Weyl repre-
sentation is faithful otk (F).

The Weyl representation @i (F,,-) is defined on
H=CP = (CP) (120)
with basis{|i) };=1...,-. We can introduce a tensor structurerby setting
T:laq,- - a) = lq'es). (121)

The shift and clock operators are compatible with that $timecin the sense that

J:(Zqiei) = Hx(qiei) (122)
= Q=)
2Q_op'e) = J=mie) (123)

= ®Z(i) (pi)

where we have implicitly defined the operators

2" (g) = x(ges) (124)
20(p) := z(pe’) (125)
and the tensor notation is justified because the newly defipethtors act only on the

ith subsystem in the sense of Eq. (121) as can easily be seen.

Let us for the moment assume that 1. By the linearity of the trace it holds that

Trpg = Tr((pie')(de;)) (126)
= Piq]Tf(ezej)
= piq’9;

X2

= Diq
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and hence

x(pq) = whr (127)
- oXipid

= [Ixe, (pid).
Note that we do not apply the summation convention if thexndeiable is bound by

some symbol, as for example by the prodptin the last line.
Combining the results from the last two paragraphs, we sae th

w(p,q.t) = x(—27'pg)z (p) (9) (128)

= Hx 27 i’ ® ®w“
= ®wl)pl7q

and hence the Weyl representatfantorswith respect to the tensor structure (121).
Going on, we compute

wwa = ([0 () a2

&,CeF

= > xw)x(g)* Quw(pi q")
€< i
= ZHx(piCi)x(qiEi)*®w(i)(pi,qi)

= & > xwiHx(d'&) w (pi,q)
EEINGIS
= ®A(i)(pi,qi)
and thus the phase space point operators factor as well.

So with the charactey chosen the way we did (in particular= 1), the Weyl operators
w and the phase space point operatérsf F,- are identical to the ones ¢F,)" and,
in particular, inherit all transformation properties frahe multi-dimensional case.

Let us formalize this observation. Consider the symplegtittor spacé’ = F? over
the extension fiel# = F,- with a symplectic basi$e,, e, }. Further, choose two field
baseq| f;}, {f*} which are dual to each other. Every vectosf V can be written as

v=u;fle, + V' fieq (130)

and is thus connected to a setfcoordinategv;, v*} in the base field,. Therefore
the map
U1

LV 1 (131)
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is well-defined and mapg to theF,,-vector spacél’ of 2r-dimensional column vec-
tors. The map is compatible with addition anfi,,-scalar multiplication. The vector
spacéV inherits a symplectic form via

[ta,tblw = tr[a,bly. (132)
The following statements relate the structure¥adnd V.

1. « maps subspaces &f to subspaces df’. Its inverse,~!, need not have this
property.

2. « maps isotropic subsets &f to isotropic subsets dfl”. Again, the converse
statement does not hold in general.

3. Let Sy € Sp(V) be a symplectic linear mapping . Then.Sy.~! is an
element oSp(1W). On the other hand, fa$y, € Sp(W), the mapping Syt~ !
can fail to be linear or isotropic.

Proof.

1. LetMy be asubspace &f and denote M by Myy. Letva, b € My, A € F,.
Then

Aa+tb = t(da+b) € My

becausé\lyy is linear. A counterexample for the converse statement aaitye
be constructed.

2. LetMy C V beisotropic. Fora, b € « My we have
[ta,cblw = tr]a, by
which is zero if[a, b]y is.

3. The last statement is a consequence of the previous ones.

O

From a pragmatic standpoint the following question arigggen anp” dimensional
Hilbert space, is it more fruitful to associate it with a 2rginsional phase space over
IF,» or with a 2r-dimensional one ovef,? From the considerations above, the lat-
ter choice seems to be more natural since all relevant steg{subspaces, isotropic
spaces, symplectic mappings) can be mapped ]ﬁ‘gmtn F2", but not vice versa. How-
ever, certain constructions in quantum state tomograptyrathe theory of mutually
unbiased bases [9] rely on the geometry of a 2-dimensiorabrspace which is of
course more manifestly presenﬂh’ﬁr.

Note that in the section, we have addressed two questiomsi fysGibbons, Hoffman
and Wootters in [9], namely the question of whether factpphase space point opera-
tors exits in any prime-power dimension and which symmejréeips they are subject
to.
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8 An Application: Automorphisms of SIC-POVMs

A detailed introduction to the problem of SIC-POVMs can berfd in the Appendix.

The particular problem we like to address here is the folhgwiln Ref. [32] Renes et
al. described a numerical method for finding fiducial statesSIC-POVMs which are

covariantunder the Weyl representation. Zauner’s conjediplies that these fiducial
states are eigenvectors of a Clifford operation. How can fiieiently compute the

Clifford symmetries of the fiducial states, given the nurcartdata?

The answer turns out to be easy if one uses the covariancenpiexpof the Wigner
function. Indeed, if¢)) is some state vector arl= (A -+ a) any Clifford operation
such thatZ|y)) = |¢), then the Wigner function ofiy) must be invariant under the
affine transformationt - + a. So the analysis of Clifford symmetries of a quantum state
reduces to the study of classical symmetries of the relatedgspace distribution. In
the next paragraphs we will derive an algorithm that autarally detects a subset of
these symmetries.

Before proceeding, let us briefly turn to the concept bisitogram Given a function
f+ A — B defined on a finite sed, the histogranhist; : B — N is

hist £ (b) == | /=1 (b)| (133)
that is, the number of timeétakes on the valug
Now consider a density matrixwhich fulfills the equatiorZ pZt = p for some
Z=p(A-+a).

The following algorithm will recover the affine transforriat A - + a given p, if the
criteria

e A has no eigenvectors and

e there exists at least omec R such that histy ()| = 1

are met.

1. Compute the Wigner functiok’, of p.
2. Compute théistogramof the Winger function.

3. There is exactly one valuesuch thathisty (r) = 1 (from the assumptions,
there is at least one such value — the uniqueness will be staten). Lety, be
the phase space point whédiétakes on that unique value.

4. Let{e;}, be abasisitV, let
v 1= Vg + €. (134)

LetT; := {w € V|W(w) = W(v;)} (T stands fortarget— the reason for this
designation will become apparent soon).
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5. Now, choose a vectoy from each sef; and assemble the vectdis— vy as the
columns of a matrixs. Then

S +(1 - S)vo (135)

is a candidate for a symmetry pf The original transformationl - +a will be
among the ones constructed in the described way.

Proof. (of the functioning of the algorithnbet f : v — Av + a be the affine transfor-
mation such that( f) leavesp invariant. From the covariance properties of the Wigner
function we know thaZpZ' = p if and only if

Wy (f(v) = Wp(v)
for allv € V. In other wordsJ¥ must be constant on the orbif®; }, of f acting on
V. Therefore,
hist(r) = Z |O;].
{i|W(0i)=r}
We have assumed thdthas no eigenvectors and hence the equation
flv) =
& Av4a=w

& Av—v=-—a
& —(A-1wv=a

has exactly one solution, namely
v=1y:=—(A-1)""a.

So{wvp} is the only orbit off with just a single element and we have proven the claim
made in step 3.

Consider the definitions from step 4 and 5. Certaiffily;;) € 7; and therefore, among
the matricesS constructed in step 5, there will be one with ite column equal to
f(v;) — v, for all 7. But

Se; = f(vi) —wo
= A(vo+ei)+a—vo
= Avg+ Ae; — (A — 1)y — v
= Ae; + Avg — Avg +vg — 1o
= Ae;

and thus there is a choice §fe T;, for all 7, such thatS = A. In that case
S +(1 =8 =A4 -+a

which concludes the proof. 0
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8.1 Computer Implementation

The algorithm described in the last section was designeddtyze numerical data and
therefore this time the computer implementation is notgusaccompanying example
but the sole reason for the algorithm to have been developed.

In[88]:= <<head .m
<< gmatrixHead .m
<<sicNumerics  .m
<< findAutomorphisms .m

The packagsicNumerics . mprovides the functiosic [] which returns amat -
rix representation of the numerical fiducial states found byeRest al. for any di-
mension up to 45.

In[89]:= qglnit [1,5]

In[90]: = sic [5]
0.163095 - 0.35541 1
0.304839 +0.0113255 1
0.278427 +0.383676 1
0.647962 - 0.282966 1
0.154455 -0.074289 i
{ket [q1]}

Qut[90] =

On first sight, the Wigner function does not look like it copsenuch information.

I n[91] : = Visualize [sic [5]]

Qut[91] = - Graphi cs3D
The histogram seems to be more promising:

I n[ 92] : = numHistogram [wigner [sic [5]1]1 //MatrixForm
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1 -0.0732051
3 -0.0943128
3 -0.04984
3 0.0267202

Qut[92]= |3 0.0306711
3 0.0778175
3 0.0993055
3 0.124063
3 0.143311

We can immediately guess ttat [5] is invariant under a Clifford operation of order
three with one fixed point.

The functionfindAutomorphisms [1 reports the linear part of the affine transfor-
mation.

I n[ 93] : = autos = findAutomorphisms [sic [511;:

I n[ 94] : = MatrixForm /@ autos
- 0 {1}s {4}s5  {4})s
4] =
antoal= {( g a2 )Ll o0 )
In[95]:= (S=autos [[1]]) //MatrixForm
- 0 {1}s
Qut[95] = ({4}5 i )

In[96]: = S.S//MatrixForm

_ (14)s  {4}s
Qut [ 96] = ({1}5 o )
In[97]:= S.S.S//MatrixForm

Qut[97] = ({10}5 {10}5 )

This is indeed an order three matrix.

The functionfindOrigin [1 checks if a Wigner function has one value that occurs
only once and reports the phase space point where that \&tialkesn on.

I n[ 98] : = vg = findOrigin [wigner [sic [5]]]
Qut[98] = {{2}5,0}

The next line shows how it looks like findOrigin fails to locate a unique point
I'n[ 99] : = findOrigin [wigner [W{0,0}111

findOrigin :: AmbiguousOrigin : Can’t locate origin : {{25, l}}

We have found an element of the Clifford group which shoulthiagic [5] as an
eigenvector...

I n[ 100] : = a = (ldentityMatrix [2] - A) .vg
Qut[100] = {{2}5,{2}5}

In[101]: = (Wa] * *u[S] = +sic [5]) "prop™ (sic [51)
Qut [ 101] = True

...and indeed it does. The binary relatigmmop™ tests vectors or operators for pro-
portionality:

In[102]:= X[1,117prop” -XI[1,1]
Qut[102] = True
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The matrix we just found complies with Zauner’s conject@an we discover anything
surprising?

In[103]:= qglnit [1,7]

I n[ 104] : = MatrixForm /@autos = findAutomorphisms [sic [711)

testAutomorphism : : unexpectedDet : {{0, {6};}, {{6}7, {2}}} has determinant {6},
testAutomorphism : : unexpectedDet : {{{2};, {2}7}, {{2}7, {5}7} }hasdeterminant {6},

testAutomorphism : : unexpectedDet : {{{5};, {6}7}, {{6}7,0}} has determinant {6},

- 0 {6} {1} {5}7 {2}, {2},
anproa= (g 7 (5] 5l 2] 5l )
(S (217 ) (1817 (817 )

2y, a Uey, o

The functionfindAutomorphisms ~ [] performs some 'sanity checking’ on its find-
ings and warns that some symmetries it found corresponadéaritransformations with
determinant 6-1 (mod 7). They aranti-symplecticather then symplectic matrices.

In[105]:= A=autos [[1]];

I n[ 106] : = A.A//MatrixForm

{5}7 ({5}7
I n[107] : = MatrixPower [A, 3] //MatrixForm
_ (1237 {2},
SUEU RN

I n[ 108] : = MatrixPower [A, 6] //MatrixForm

_ ({1} 0
Qut [ 108] = ( o' 1y, )
The automorphism group is cyclic of order six. We concludat thhe usual order-
three symmetry group that seems to be present in all dimesiki@s an anti-symplectic
‘root’ in dimension 7. Itis not hard to see that the metapte@presentation on a two-
dimensional vector space can be extended to cover antilegtigotransformations, if
one allows for antianitary operators.

Using the described method, we have verified the compayiluifi Renes’ numerical
fiducial states with Zauner’s conjecture for all prime dirsiens between 5 and 43.

After this work had been conducted, the compliance of Rengducial states with
Zauner’s conjecture has been verified by Appleby [34] usiffgrént techniques.
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Part Il

Equivalence Relations Among
Stabilizer Codes
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9 Introduction

In quantum information theory it is natural to regard two tiphrticle states asquiv-
alentif they can be mapped onto each other by a local unitary operdtiowever, the
task of deciding whether or not two given quantum states quévalent in that sense
is far from easy. For the special case of stabilizer statesetis a second notion of
locality which is formulated in terms of their descriptiomsubspaces of a phase space
F2". Two stabilizer states are calléatal Clifford (LC) equivalent if they are related
by the action of a local Clifford operation. Clearly (see 8®ts 4.5 and 5), this is the
case if and only if their associated isotropic spaces cambescted into each other by
a local symplectic mapping. A question that has attractadesattention in the litera-
ture is whether the two described definitions of localityesgrdoes local unitary (LU)
equivalence imply LC equivalence? The second half of thesithis devoted to finding
a partial solution to this problem for the special case o@bhjrstates. The problem has
some history which can be found in Ref. [27, 22, 23, 24, 25].

The purpose of this first section is to develop some notiomistaals for discussing
locality relations between stabilizer states. We starhwit analysis of the space of
hermitian operators and their transformation propertigsen conjugation by local uni-
tary mappings. Some of the ideas and definitions in the fatigvgection are taken
from Ref. [28, 27] Since we will be concerned only with binagstemsF meandF,
for the rest of the thesis.

The four-dimensional real vector spakieof hermitian operators ofi? is spanned by
the Weyl operators

{w(0,0),w(0,1),w(1,1),w(1,0)} = {oo, - ,03} (136)
- {LX,Y,2) (137)

The Hilbert-Schmidt inner product

(.0) = 5 r(p0) (138)

turns H into an orthogonal vector space. To emphasize the rol¢ a an orthogonal
vector space, we adopt a bra-ket-type notation for its etesigy setting

i |i) (139)
fori € {0,---,3}. As H possess an inner product, dual vectors are well-defined and
denoted as 'bra’s:

(ol == (p, ). (140)

Additionally, it will prove useful to talk about vectors &f in terms of their coordinates
with respect to the orthonormal basis (139). For a velgthwe define

p' = (ilp) = (o4, p)- (141)
Clearly,
o) =>_p'li)- (142)
The function
7 — pi (143)
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is nothing else but theharacteristic functiorof |p)). We write the coordinates of bras
with respect to the dual basjgi|}; using lower indices:

(ol =" pilil. (144)
However, it is easy to see that they coincide
pi=1p'. (145)

Conjugation by a unitary operatér induces a unimodular orthogonal mappiRgl )
in H via the relation

UoiUt = > Rijo;. (146)
J

What is moreall orthogonal matriceg € SO(3) can be obtained this way. See [29]
for detailed formulas. Becauss is fixed under conjugatiorR? takes on the form

1 0 0 0

_ [0 oo
f= 0 rf r2 r3 (147)

0 r$ r3 13

wherer = (r;) is a three-by-three orthogonal mapping. We have three wilg®k-
ing at the transformation:

o = UpUT (148)
") = RU)Ip)
pi’ _ piRi’i

Here, we have adopted the bad habit of general relativiisstaark the transformed
version of a vector by priming its indices. Also, Einsteisismmation convention
applies.

The generalization to tensor produgts= (C?)®" is straightforward.
The set
{Im)) := w(m)|m € F?"} (149)

forms a basis in the space of hermitian operatorgfonThe characteristic function
becomes

o) > M m) (150)

me]FZn

3 PT) @ ® fin).
11, 40

The latter notation is more convenient when talking abcangformation properties
and should cause no confusion. Under conjugation with d lodgary mapping

U=U,® ---QU, (151)
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|p)) transforms as

pzl..-i;l :p“Z"(Rl)l;“(Rn)l" )

in

(152)

For a phase space vectar € F?", thesupport ofm —supp m — is the set of systems
wherem is non-zero. We also need a term for the phase space pointe @hehar-
acteristic function is non-zero. However, in order to avoichfusion, we refrain from
using the wordsupportfor this set too. Instead, we speak of tiemainof a phase
space function. The domain of a vectbann |p)) of H is defined via its characteristic
function:

dom |p)) := dom p" := {m|p"™ # 0}. (153)
If B is asubset of?", thensupp B is the set{supp b|b € B}, as one would expect.

Two more definitions are in place. Consider a set of systems {1,--- ,n}. By
(i1,--+ ,ij|)w We denote the phase space vector that takes on the valt®s,,| on
the systems i and zero elsewhere. Conversety,(m) is the restriction ofn € F?"
tow. m;(m) is the value ofn on theith system.

9.1 Stabilizer Codes

Fix an isotropic subspad¥ of  and a basigm, }, of M. Using the definition of(-)
from Section 5, we define
wpr(m) = s(m)w(m). (154)
It is now easily checked that
wpr(my + ma) = way (mq)war (ma) (155)

for mi,my € M and thus the representation — wy;(m) is faithful. The set
{wpr(m)lm € M} is an orthonormal basis in the space of all hermitian opesato
whose domain is contained 1. If |p)) is such an operator, its expansion reads

o) = > prrwar(m) (156)
meM
where the functiomn — p;, is called the)M -characteristic functiorof |p)). It holds
that
PR = p™s(m). (157)

Of course, the representatiamn, (-) depends on the choice of a bagis;} of M.
However, because that choice is completely arbitrary, vep dmy reference to the
basis in our notation. Once a representatign(-) is fixed, no phase ambiguity occurs
in the correspondence afy;(m) to m, so we don't necessarily distinguish between
phase space vectors and Weyl operators. For example, tHeosyX Y'Y 1 might be

an element of eithef?” or of H depending on the context.

For anyd-dimensional isotropic subspadé of F2", we define

|M)) = % > wa(m) (158)
meM

= 5 3 stm)lm). (159)
meM

That is|M)) is the projection operator onto the stabilizer code defingd\b (see
Section 5).
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9.2 Invariant Subspaces

The fact that (147) does not mix non-trivial Weyl operatoithvthe identity causes
some subspaces &f to be invariant under the action of the local unitary group.

Definition 3 (Invariant subspacesetw be a subset ofl, --- ,n}.

1. T,, is the set of phase space vectors with supporbohe.

T, := {m € F?"|supp(m) = w}

2. 7, is the subspace dff spanned by the operators

{lm)|m € T }.

3. We define
To=Y_ [m){ml.

meT,

This is the projection operator ontf,.

Proof. (of the claim made in point 3yhe range ofZ,, is clearlyZ,,. Further,7,, is
idempotent

Lo = 3 )l S (m) |

meT, m’'eT,

= 2 Imh{mim ) m
= Y m)(eml

= T,

and self-adjoint

GolTo) = D (ol(Imh(mio))

Il
7
S
c
3
S

Lemma 4 [28] The following holds.

1. 7, is preserved under the action of local unitaries.
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2. 7., commutes with local unitaries.

3. Let|p)) be some element éf whose domain is contained in an isotropic space
M. The effect of 7 on the M -characteristic function is

)" = %
(Z10)), = Phicr. (m)
wherexr, is the indicator function o,
1 meTl,
Xz, (m) := 0 else

Proof. The first assertion is proven in [28]. The second one follommediately.
Lastly,

m

(Zele)) . = stm)(miZlp)

M

but

9.3 Composition

The standard operator product givfsthe structure of an algebra. |If)) and|o)) are
elements off, we denote the their operator product as

o) x o) (160)

If two hermitian operatorf)) and|o)) have support on a common isotropic spaée
the M -characteristic function of their operator product is autarly simple.

Lemma5 Let|p)) and|o)) be vectors orf{. Letdom |p)) anddom |o)) be subsets of
a common isotropic space/. Then

(10} * o)) nr = > pi'os".

my € dom|p))
mz € dom |o))
mi1+mo=m

Proof.

lp) x|o) = Z ot war(ma) | * Z oy wa (ma)

mledom |p)) m2&dom |o))

— Z Z Pt o war(my + ma).

ml€&dom |p)) m2€dom |o))
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9.4 Traces

Having both kets and bras, we can construct operator&/ orindeed, it is easy to
pinpoint a basis of the set of all operatorsén

{Im)¢nl  |m,n e F2"}. (161)

Thus a basis expansion of an arbitrary operatoeads

A= )" A" m)(n| (162)
m,neF2n
For a subsep of {1,---,n}, we define the partial trace overin the same way it is

commonly used in Hilbert spaces:

Tr, A= Y w{mlAlm).. (163)

TTLE]F?M‘

In terms of the characteristic function, the partial trax@contraction For example,
by tracing over the first systems, we get

(Try, A)i’f“”'i"jkﬂmjn = All”'l“k““‘i“ll...lk]—kﬂ...jn. (164)
The partial trace is compatible with LU-transforms in thasethat
Tr, (RAR") = R (Tr, A) RY (165)
as can be seen using (164).
The norm of|p)) fulfills
oIl = (olo) (166)
= Trlp)p|
= PPy in

9.5 Clifford Operations

A Clifford operation is a unitary operator which maps Weykagtors onto Weyl op-
erators under conjugation. For a single system 1, a Clifford operation thus corre-
sponds to @ermutatiornof the basis vector§| X)), |Y)), | Z)) } modulo phases. We see
that a unitary mapping is a Clifford operation if and onlytitmatrixr; (U), as de-
finedin (147), contains in each column exactly one entryed#ifit from zero. To satisfy
orthogonality, this entry must be one pf1, +1}. Such a matrix is callethonic[27].
One can weaken the notion of a Clifford operation to desauitiaries that map, for
example, only one of the three Weyl operators to another fagtator. This motivates
the following.

Definition 6 (i-monoticity)

1. An orthogonal three-by-three matrixis calledi-monicif it contains at least
columns with exactly one non-zero entry each.
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2. If thejth column of a matrix is monic, we say thatis o;-monic

3. A unitary operation on one systemiimonic if it induces a-monic matrixr via
(147).

4. Alocal unitary mapping is-monic if all its factors are.

For example, an operation §-monic if it maps the operatoX to another Weyl oper-
ator under conjugation.

Lemma 7 (i-monic matrices)

1. Any orthogonal 2-monic matrix is 3-monic.
2. Any orthogonal 1-monic matrix is LC-equivalent to

cosp —sing 0
sing  cosp 0
0 0 1

The above matrix is induced by the Hilbert space operator

e~ /2 0
0 el®/2 |-

3. Multiplication by 3-monic matrices preserves monoficit

Proof. To prove the first claim, use the standard vector product topege the third
column out of the two monic ones.

As for the second claim, let be a 1-monic matrix. There exists a column, #h
say, which is monic. Let denote the position of the non-zero entry of that column, so
|r¥;| = 1. There is a representationof the symmetric groug®s in terms of monic
SO(3)-matrices [27] generated by

0 -1 0
12 — [ -1 0 o |,

0 0 -1

-1 0 0
(23) — 0 0 -1

0 -1 0

Modulo signs, this is the standard representation of thensgtric group by permuta-
tion matrices. Now letrs;) and s, by the images of the two-cyclg8k) and (37)
underr. Let

7= 7T(3k)7’7'r(3l). (167)

Itis easy to see that
73] = =1 (168)
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which implies that both the third row and the third column-ahust be monic due to
orthogonality. Thug has the form

o0 2
O Qo

0
0o |. (169)
+

—_

We can assume that the signidfis positive, for else we multiply by

1 0 0
0 -1 0 |eSo®m). (170)
0 0 -1

Then the upper left block matrix must be an elemen$6f(2) and any such matrix is
of the form (2), as is well-known.

The generating unitary matrix can be found in Chapter 4.26F.[

Lastly, note that — modulo phases — left (right) multiplioatwith a 3-monic matrix
only permutes columns (rows) efand thus does not change monaoticity. 0

10 Blocks

Consider an isotropic spadé. Using Lemma 4 it is not hard to see that
suppdom |M)) = {w|Im € M,supp(m) =w}
= suppM

is an LU-invariant. It is known [30] that these invariantg aot powerful enough to
discriminate LC-equivalence classes. Now, look at a suBsat M and define

|B) = > war(b).

beB

Obviously,supp dom |p)) = supp B is an LU-invariant as well. But in general we
can make little use of this information. Indeed HAfis a local unitary operator such

that R| M) is another stabilizer codé/’)), then there is no obvious interpretation of
dom R|B)) in terms of elements af/’ (remember thatB)) does have such an inter-
pretation with respect td/). However, there exists subsetsidfsuch thatlom R|B))

is a subset oft/’. We call those sets thelocksof M. It turns out that the supports of
the blocks of an isotropic space convey much informatioruatie space itself. In the

sections to come, we will define and explore the block stmeadd isotropic spaces.

Definition 8 (Blocks)Let M be an isotropic space. THaocks of M are subsets of
M defined recursively by the following rules.

0. M is a block.
1. If Bis a block andv is a subset of 1, - - - ,n} then
T,NB
is a block, denoted by} (B).
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2. If B; and Bs are blocks then
By + By :={m1 + ma|my € By, ma € By}
is a block, denoted as(B1, B2).
3. If B; and B5 are blocks then

B U By
is a block, denoted as; (B, Bs).
4. If B is a block then
B \ T,
is a block for everyo C {1,--- ,n}, denoted asy (B).

In other words, a block is the result of any recursive apfibice of the functions; on
M. For example, the set

B = {m1 +m2|mi e M,my +mgy 7é 0} (171)

can be written as
B =r(M) = ri" (ry (M, M) (172)

and is thus manifestly a block.

Definition 9 (Block rules)If B is a block ofAM andr is a composition of the functions
{ri},_y.., (@sin (172)) such that

r(M)=DB

then we say that is the rule ofB.

From the definition of a block, it is clear that such a (pogsit@n-unique) rule always
exists.

Here is why blocks are important.

Theorem 10 (A family of LU-invariants)Let M C 2" be an isotropic space. Let
be the rule for some block @f. Then the function

M — suppr(M)

is an LU-invariant.
The rest of this section is devoted to the proof of the theorem

Definition 11 (Block vectors)Let M be an isotropic space. A vectty)) is called a
block vectorif

1. the domain ofp)) is a block ofM and
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2. theM-characteristic function ofp)) is non-negative.

In the following paragraphs, we’'ll often speak of two blodgkctors at a time and as-
sume implicitly that their respective domains are blockshefsameisotropic space.
This should always be clear from the context.

We now prove that there exists a quantum analogue of blocks.

Lemma 12 (Operations on block vectorkgt|p)) and|o)) be block vectors. Let be
asubsetofl,--- ,n}.

0. LetM be aisotropic space. Then/)) is a block vector wherdom |M)) = M.
1. Let|p)) be a block vector. Then
7 (1p)) = Talo)
is a block vector where
dom7,B = T, Ndom |p)
= r{(dom|p)).

2. Let|p)) and|o)) be block vectors. Then

a(lo)), o)) = |p)) x o)

is a block vector where

dom(|p) * |o)))

(dom |p))) + (dom [a)))
= ra(dom|p)), dom|c)).

3. Let|p)) and|o)) be block vectors. Then
3(lp); 1o)== |p)) + o))
is a block vector where

dom (|p) +|o)) = dom|g) Udom|o)
rs(dom |p)), dom |o))).

4. Let|p)) be a block vector. Then

Falp)) = (1=12) o)
is a block vector where

dom|p) \ T, = r§ (dom |p})).

Further, let B be a block ofA/, and let ber a rule such that(M) = B. Letr be the
operator obtained from by replacing each rule; by ;. Then

dom #(| M) = r(M).
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Proof. Let us look at the points in turn.

0. dom |M)) = M which is a block of M by Definition 8.0. Further, thé/-
characteristic function df\/)) is non-negative (and even constant):

{mls(m) Y s(m")m')

m/’

= s(m)s(m')Y_{m|m")

m/’

{{mls(m)[ M)

= s5(m)?

=1

1. By Lemma 4 theM/-characteristic function of;, |p)) is pointwise non-negative
and its domain islom |p)) N T,,. The latter set is a block af/ becauselom |p))
is and thus the rule from Definition 8.1 is applicable.

2. Consider the formula in Lemma 5. If for a given there existn; € dom |p))
andms € dom |o)) such thatn;+mq = mthen(|p))+|o)))7; is strictly positive
because all summands in the above mentioned formula actyspositive. Thus
lp) + |o)) has the claimed domain and ifg-characteristic function is non-
negative. The claim is proven by the use of Definition 8.2.

The remaining points 3. and 4. can be verified analogously.

To prove the last statement, one only needs to compare thrufas for the domains
of the block vectors with the corresponding expressionsdfiriition 8. 0

Definition 13 (Rule Operatorslf B is a block ofM and
B=r(M)

for some ruler, we define
|B)) = 7| M),

and call therule operatororresponding to-.
The following simple observation is crucial.

Lemma 14 Rule operators commute with local unitaries:
FRIM)) = RF|M)),

for each local unitary operator.

Proof. The fact that the projectior, commute with LU operators has been shown
in Lemma 4. Now recall that LU operators act éinby conjugatior(see (146)). Thus
the application of LU operators commutes with compositaddition and subtraction
of vectors ofH . But these are the operations which thare built of. 0

We can now proof the central theorem of this section.
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Proof. (of Theorem 1Q)Let M be an isotropic space and lebe the rule for some
block of M. Letw C {1,--- ,n}.

wesuppr(M) < w e suppi|M))
& {m e dom#|M)|supp(m) = w} # {0}
& T,M) #0.
The last line is LU-invariant by Lemma 4 and Lemma 14. 0

There is a particular type of blocks that will prove usefuthie sequel.

Definition 15 We define the rule

d(B) := (B+ B)\ Ty
= {b1 +b2|b1,b2€B/\b1+b2750}.

11 A Restriction on LU Operators

Not every local unitary operator can map a stabilizer codartother one. We will
now explore the restrictions imposed on LU operators by ¢éggiirement that they do
possess this capability.

Lemma 16 Let M be an isotropic space, leB be a block ofdM/. Let R be a local
unitary mapping such thak| ) is again a stabilizer codg\/")).

If B ={m} is of order 1 thenR is 1-monic orsupp m.

Proof. Letr be the rule corresponding 8. The main task is to show th&' := r(M’)
has again order one. Using Definition 15 it is easy to see that

d(B) = {0}.

That is,supp d(B) = suppd(B’) = {0}. Butsuppd(A) = {0} for some block4
onlyif |A| = 1 because i had two distinct elements; andms, then0 # mq+mq €
d(A) by Definition 15.

Now, considerf B)) and|B’) = R|B)). We know that the respective domain of each
of these operators is just one phase space point. Thus ta@yarortional to the Weyl
operatorgm)) and|m’)) respectively. But because both Weyl operators Rrede local
by definition,

Rilmi(m))) = |mi(m/)))
for all : € suppm. It follows thatR; is 7; (m)-monic. 0

The above result can be slightly generalized.
Lemma 17 Let M be an isotropic space, leB be a block ofAM. Let R be a local

unitary mapping such thak| 1)) is again a stabilizer codg\1’)).
If for some systennit holds that|w;(B)| = 1 andn;(B) # {1}, thenR; is 1-monic.
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Proof. As in the last proof, we see that;(B’)| must be one. Indeed, no element
of B + B contains the systemand hence the same holds for the element8’of-
B’. Again, if there were two vectors:; andms in B’ that differed oni, theni ¢
supp(m + m2) which is a contradiction.

Now, let{W} = m;(B). Itis easy to see that

[B) = [W)i®|V)
[B) = WiV
for some vector§V ), |[V')). R; maps|W)) to +|WW’)) and is thug¥-monic. 0

Next, we will consider a type of blocks which imposes an evesngyer restriction on
R.

Definition 18 (See [27]) A blockB is said to be ofRains’ typeif

1. Bis of order three,
2. all elements have support on the same set of systems

3. for any system € w, |m;(B)| = 3, that is, all elements oB are pairwise
different on any system,

4. w| > 2.
It is easy to see that any block of Rains’ type is LC-equiviten
{X\w\,y|w|7 Z\w\} , (173)
Lemma 19 Let M be an isotropic space, leB be a block ofAM. Let R be a local
unitary mapping such thak| ) is again a stabilizer codg\/’)).
If B=r(M) is of Rains’ type the®®’ := r(M’) is again of Rains’ type.

Proof. There is no loss of generality in assuming tiais of the form (173).
Using Definition 15 one finds by direct calculation that
d(B)=B (174)

and hence
suppd(B) = suppd(B') = w. (175)

We can now show that any two distinct elememtg m- of B’ differ on all systems of
w. Indeed, let us assume to the contrary, that there existstarsy € w such thatn,
equalsms oni. Theni ¢ supp(m; + ms) and thus

supp(my + ma) # w.
From Definition 15 we know that
my +mg € d(B/)

and thus
supp(mi + my) € supp d(B')
which contradicts (175).

We go on to show thdtB’| = 3 by ruling out all other cases.
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1. Assume|B’| > 3. Then on any system at least two elements @B’ must
be equal (for there are only three different values to chdasa). But this is
impossible from the last paragraph.

2. Ifonthe other hanB3’| = 0 or | B’| = 1. Thend(B’) = {0} again contradicting
(175).

3. Lastly, if|B'| = 2 thenB’ is LC-equivalent to
{Xlwl, lel}
and we see that
d(B') ~pc {Y¥},

Thus
d*(B") = {0} (176)

(again by Definition 15). But (174) shows that
d*(B)=d(B) =B
implying that
w = supp d*(B) = supp d*(B’)
which contradicts (176).

B’ is therefore a block of order three and any two vectorBirdiffer on all systems.
But any such block is LC-equivalent to (173). 0

Lemma 20 Let M be an isotropic space, leB be a block ofM. Let R be a local
unitary mapping such thak| ) is again a stabilizer codg\/’)).

If B =r(M) is of Rains’ type ther® is 3-monic orw.

Proof. By Lemma 19 we know that there exists an LC-mappinguch that. B’ = B.
Because of Lemma (L) R is 3-monic if and only ifR is and hence there is no loss
of generality in assuming thad is such thaB = B’. Further, we assume th&tis of
the form (173).

The rest of the proof is due to Rains (Theorem 13 in [27]). We=eat it here for the
sake of completeness, in order to translate it into our lagguand to make some slight
generalizations.

Let
o) = 1B)
0") := RIB)
Recall that any vectdw)) with domainB has the form

o) = JX”'X|X>>1 R @ XD +
O’Y”‘Yly»l Q- ® |Y>>\w\ +
o” NI @ ® 2o
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Now let 5 = {1,2},v = {3,--- ,|w|} and consider the operator
PR X D22 (X = 1<< I[Trw PN 11X )

X|[Tey RIp) (oI RT] 1 X )1

[T Rﬁ|P P|Rﬁ] | X )1

= ( (X [R Ty o) (ol BT 1 X)) Ry

From the first line it is clear that the rank of the operator.igfius

= 1

1 = rank Ry (1(X| [R1 Try |p) (p| BT ] [X)1) R
= rank (X] [Ry Try |p) (ol RT] [X)1.
But
Try o) (ol = P FIXXND(XX| +
pYIYY (Y Y|+
p” AN ZZ) (22|
and thus
X [RaTrg [p) (oI RTT X ) = (Ra)™ x pX XX (X +

(B1)™y p YDV +
(R)™ 5 p”21Z)(Z]
which has rank 1 if and only ifR; )% _is monic. The same argument can be repeated

with 1 (X - | X))1 replaced by the corresponding expressions involingnd Z and
henceRz; must be 3-monic. The same holds for all systems. 0

Part of the definition of a block of Rains’ type was that > 2. This is no restriction
of generality as the following lemma shows.

Lemma 21 Let M be an isotropic space. |fM)) is fully entangled, then there is no
subset inM which fulfills Rains’ condition except that| = 2.

Proof. Let M C F?" be an isotropic space and IBtC M be a subset as stated in the
lemma. In compliance with (173), we assume tRdtas the form

{(XX)0, YY)0,(Z2).}. (177)

Two phase space vectors commute if and only if they are nom-aed different on
an even number of systems. Thus any vector which commutéstiét elements in
B mustbeX X,YY,ZZ or 11 onw. Therefore,M is spanned by3 and the set of
vectors which equal 1 onw. Denote the latter set by. Then

M=A®B

and hence
|M)) = |4)) ® |B)).

The expression is well-defined because hatand B U {0} are isotropic spaces. We
conclude thatM)) is not fully entangled. 0
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Definition 22 (Simple blocks)B is a simple blockif | supp B| = 1, that is, if all its
elements have the same support.

We now state the central theorem of this section. Here, atfttisequel, we’ll always
assume that for any isotropic spaktg dim M > 2, to rule out some special cases.

Theorem 23 (Restriction on LU mappingd)et M be an isotropic space. IR is a
local unitary operator such thak|M)) is again a stabilizer codéM’)), then R is
1-monic.

Proof. Fix a system. We will prove the following assertion by induction an|:
If M contains a simple blocB wheresupp(B) = w andi € w thenR; is 1-monic.
If lw| = 1thenBis one ofX, Y or Z on theith system.R; is then 1-monic by Lemma
16. Now supposev| > 1. Let's treat three different cases in turn:
1. |m(B)| = 1. ThenR; is 7;(B)-monic by (17) and we are done.

2. |m;(B)| = 2. There exist two elements;, mo € B such thatr;(m1) # m;(mz2)
and hence
i € W' :=supp(mq + ma). (178)

Clearly then,
A:=(B+ B)NT, (179)

is a simple block of\/. Further,m;(A) = m;(m1 + m2), thus|m;(A)| = 1 and
we have reduced this case to the previous one.

3. |m;(B) = 3|. We know there exist elements;, mz, ms of B such that

m-(ml) = X
m-(mg) =Y
m(m3) = Z.

We again distinguish two cases.

(a) Suppose among those three vectors there exists &pairm;) such that
w’ := supp(my + m;) is a proper subset of. Defined asin (179).Ais a
simple block; € supp(A) and further{ supp A| = |w’| < |w| and thus the
existence of4 is sufficient to conclude thak; is 1-monic by the induction
hypothesis.

(b) If the condition for the last case can not be fulfilled tlagry two vectors of
{m1, ma2, ms} differ on all systems. Thusmy, ms, ms} is LC-equivalent
to (173) and there is no loss of generality in assuming that

mq = X‘w‘
meo = Y|w|
ms3 = Z'wl

If |B] = 3 thenR,, is 3-monic by Lemmas 20 and 21 and nothing remains
to be shown. So assume th@&| > 3. There exists a vecton, € B
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distinct frommg, mo, ms. Let’s for now assume that;(m4) = X (all
other cases can be treated in an analogue way). There masagxioper
subsetv’ of w such thatr,, (m4) equals eithet’ 'l or Z1+'I for elsem,
would equaln;. DefineA as in (179) and proceed by induction as in 3a.

Finally, note that for any systeithere exists a simple block such that € supp B.
Take any element of M such that € suppm. Then

TsuppmM
is such a simple block. 0

We have seen that the presence of blocks of order one and é’Rgbe are sufficient
to ensure that only 1-monic unitaries can map stabilizeesdd stabilizer codes. It is
natural to suspect that blocks of higher orders impose evenger restrictions on the
unitaries and that — except for the well-known Bell stateecasnly Clifford operations
can map stabilizer codes to stabilizer codes. Howeverjghist so as the following
example shows.

12 An Example: GHZ-State on Four Systems

We consider the GHZ-State on four systems:
|GHZ) = 10000) 4 [1111). (180)

It is a stabilizer state corresponding to the isotropic epecspanned by the columns

of the matrix
z

z Z
z Z
z

(181)

8 8 8 8

We have replaced '0’ by a dot in order to underline the suppbthe vectors. The
entire isotropic space is

T xr r T z 2 Z zZ Yy yy
z z xr x Yy Lz oz T oy y (182)

z . Z Ty x Yy . z z x Yy x Yy

zZ z . x Yy xr z zZ Yy T x Yy

We clearly see that the blocks of order one guarantee-thenoticity. But we have no
tool at hand that would tell us whether or not the block

T r x T Y z Yy y
T r Yy Yy y Z2y x T (183)
T Y Yy r x zyy x
T Yy x Yy x z Yy x Y

can be mapped to the block of another stabilizer state by aQiiffiord operation.
However, the structure of the Hilbert space vedt®t Z) is much easier. Indeed,

e~ 1/2 0 e—ih4/2 0
< 0 oi%2/2 > < 0 ita/2 > |GHZ)

x e UPrtF94)|0000) + [1111) (184)
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which equal§GH Z) if and only if the phase®; sum to unity. So we have found a
(n — 1)-parameter family of non-Clifford automorphisms of the Gisate and thus of

(183). Itis not hard to see that all local unitary automospis of the GHZ state are
contained in this group.

The result can easily be generalized to any GHZ-state onemmymber of systems.

13 LU=LC for Blocks

In Lemma 6 we have shown that any 1-monic LU operdtds LC-equivalent to an
operatorR = yu(Ly)Ru(L;) which fixesZ. Therefore,R|M)) is another stabilizer
code|M")) if and only if

R|L M) = |Ly " M")). (185)

Clearly, M and M’ are LC-equivalent if and only it ; M andL; * M’ are. This moti-
vates the following definition.

Definition 24 (Reductions)

1. Thereduced local unitary grouB LU is defined to be
{Re LU|R|Z)) = |Z)}

That is, each factor of an operator iIRLU keepsZ fixed. RLC is defined
similarly.

2. For a phase space vector € F?", we define itseduced suppotb be the set of
systems wherer is X or Y:

supppm := {i|r(m) € {X,Y}}.

3. Lets; and 3y be subsets of1, - - -, n}.
(a) Sg, s, is the set of phase space vectors which are equdl tm 5y and
equaltoZ onGy.
(b) Sgl,@z is the projection operator onto the space spanned by

{Im)|m € Sp. 52}

Having these terms at hand, we can formulate a corollaryefitecussion at the be-
ginning of the section.

Lemma 25 LU (M) = LC(M) for all isotropic spaces\/ if and only if RLU (M) =
RLC(M) for all suchM.

Proof. See discussion above. 0

In the light of the last lemma, we will restrict our attentitanthe action of the reduced
groups in the sequel. In order to suit this new situation, we re-define the notion
of ablock It is our hope that the confusion that arises due to givingw meaning to

an existing term is less than the confusion which the intatida of yet a new type of
blocks would cause.
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Definition 26 Let M be an isotropic space. A subggtof M is a block ofM if

1. Bis a block in the sense of Definition 8

2. If B is a block, then
Spy.p, N B =: Tgﬁnﬁz)(B)

is a block for all subsetg;, 57 of {1,--- ,n}.

The rule operator associated iq is

#P P2 ) = Spy 510D

Lemma 27 The function
B+ supp(B)

is an RLU-invariant for all blocks3.

Proof. We omit the proof, which can be conducted along the same #seke one in
Section 10. O

Avectorm € F?" which has trivial reduced suppettpp , m = {0} is invariant under
the action of the reduced groups. Further, consider twaovest;, ms with have the
same reduced support. Their sum is an invariant vector Isesapp (m; + mg) =
{0}. A re-occurring scheme in the next paragraphs will be tordesa@as many aspects
of a block as possible in terms of invariant vectors.

Lemma 28 (Generated Subspaceést B be a block of an isotropic spadd . Then
(B) := {all linear combinations of elements oft B

is a block of)M.

Proof.

(B = (BUO™
= (BUT{@}(M))+TI

Definition 29 A block B is calledprimaryif
B =383, N M.

If B C B generates a primary blocB in the sense that
Sp1,8, N (B) =B

thenB is called abasisof B.
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Lemma 30 (Properties of Primary Blockd)et M be an isotropic space, |8 be a
block of M. Let R € RLU such thatR|M)) is again a stabilizer codgM")).

If
B = 8p,,, N M.

is primary, then

1.
|B'| = |B.
2.
Sﬁn7ﬁzm<B> = B
Proof.

1. Lemma 4 can easily be adopted to the new definition of a bMekthen see that

d(a mo +1 m68517gZﬂM
2 (SQI’BAM») o { 0 else
and thus
||2d851,5Z|M>>|| = |Sﬁn,ﬁzﬂM|
= |B|

by (166). The last statement is clearly LU-invariant.

2. Letb € B. Clearly,b € (B) and hencé € Sz, g, N (B). Conversely, if
b€ Sp, 3, N (B) thenb € M in particular and € Sg, 3,, thereforeb € B.

The preceding lemma shows that each primary block has a basis

Theorem 31 Let M be an isotropic space, ldB be a reduced block of/. Let R €
RLU such thatR|M)) is again a stabilizer codgM’)).

If
B = Sﬁnﬁz N M.

is primary, thenB’ is RLC-equivalent td3.

Proof. Let B = {m4,---,my} be a basis oB. The following set is another basis in
B:
N:: {ml’m2+mlam3+m17"' 7md+m1}
=inz =ns =ng
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The vectonn, is the only element iV that has a non-trivial reduced support. In con-
trast, the vectorgn; },_, ., are invariant and thus containedi’. Becauseuppy B
is anRLU-invariant, there must exist at least one elemgnin M’ such that

SUppp M1 = suppp B.

Besides its support, we don’'t know anything abautand the key observation is that
we need not to. Indeed, irrespective of the details ¢fit holds that

{nl,ng,--- ,nd} =B cM

is RLC-equivalent to
{my,na, -+ ,ng} =B C M.

This is because; andm; are RLC-equivalent (any pair of vectors with same reduced
supportis) and the;,: > 2 are RLC-invariant. But then

Sﬁn,ﬁz N <B> ~LC Sﬁn,ﬁz N <B/>
The right-hand side is a subset of
S5,.8, N M =D

HenceB’ contains a subset which is RLC-equivalentBo But because of Lemma
30.1 this subset must be all 8. 0
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14 The Next Step

Until now we have tried to tackle the LU-equivalence problgndividing the isotropic
spaces into 'building blocks’ and solving the problem foegh smaller constituents.
This programme has been completed, because any isotr@aie &pthe disjoint union
of its primary blocks. We now need to put the pieces back tuaet

Indeed, consider two blockB; and B, of M. We know there exist LC operatofs
and L, such thatRB; = L;B; for any LU operatotR. But it is a priori not clear that
there exists atl thatsimultaneouslynapsB; to B andB; to Bj.

Unfortunately, a solution to this problem is currently notsight. We will briefly
describe why this task poses a serious challenge and whiaéfuuestions need to be
addressed. Consider two blocks and B, with respective reduced suppotis, wo
and their image®3; and B/, under some RLU-operation. The result of the last section
allows us to assume th& = B; without loosing generality. By the remark following
Lemma 27, it holds thaB; + B- is a block with reduced suppart Aw,. Here,aAb
denotes thesymmetric complemenf the sets: andb. Thereforer,,, ~.,(B1 + Ba)

is invariant. The latter invariant describes in a sensectreelationsbetweenB; and
Bs. The proof of Theorem 31 can now be generalized to yield tiede correlations
already determind), on the systems, N wo. More concretely, in the above setting
we automatically have,, (B5) = 7., (B2). Furthermore, it is not hard to see that by
the use of RLU operations that act only on the complemenif w; it is possible to
achiever;, (B}) = 7y, (B2). Summarizing, we have

B, = B (186)
Ty (By) = M, (B2) (187)
Ty (Bé) = T (BQ) (188)

Note that the last two conditions are not sufficient to codelthatB, = B, holds,
opposed to what a naive intuition might suggest.

For the case of a code spanned by only two blocks, it is stbifde to prove that LU
equivalence implies LC equivalence. However, alreadyistawith three blocks, only
partial correlations in the sense of Eq. (187), (188) carhiogva to hold. The next step
in the analysis of the LU-equivalence vs. LC-equivalenadbfam must clearly be to
gain a greater understanding of the implications of thesggbaorrelations.
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15 Conclusions

In this work a coherent picture of phase space methods intgomimformation has
been drawn. A description @haracteristic functionsWigner functiongndstabilizer
codesin an algebraic language has been given. We have analyzeditbmorphism
group of the Weyl operators and used theses results to degbe covariance proper-
ties of Wigner functions. The case of phase spaces oversatefields has received
a detailed treatment. We applied the findings to the anabfsSlifford symmetries
of a set of numerically given quantum states that genera@eP®IVMs. Many of the
introduced concepts have been implemented in a collecfipaakages for a computer
algebra system. Lastly, we have set up a framework for déscgshe problem of lo-
cal unitary vs. local Clifford equivalence of stabilizerdss and derived some partial
results on that open problem.
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17 Zusammenfassung

Diese Arbeit befasst sich mit endlichen Phasenrdumen wrdualrbasierenden Metho-
den in der Quanteninformationstheorie. Die Konzeptectarakteristischen Funktign
derWignerfunktionund vonStabilisatorkodesverden in einer einheitlichen, algebra-
ischen Sprache prasentiert. Desweiteren analysierenevikutomorphismengruppen
von Weyloperatoren und verwenden diese Resultate um diariémzeigenschaften
von Wignerfunktionen zu beschreiben. Der Spezialfall vbadgenraumen Uber alge-
braischen Erweiterungskorpern wird im detailiert behdndiese Erkenntnisse wer-
den weiter verwendet um die Clifford-Symmetrien von nuisetigegebenen Quanten-
zustanden zu analysieren, die SIC POVMs erzeugen. Vieleidgefuhrten Konzepte
wurden in einer Sammlung von Paketen fur ein Computerag8ystem implemen-
tiert. In einem zweiten Teil wird ein mathematischer RahmarDiskussion des Prob-
lems von lokaler unitarer Aquivalenz im Gegensatz zu lak@l#ford Aquivalenz von
Stabilisatorkodes geschaffen. Wir geben einige Teilartemzu diesem offenen Prob-
lem.

Diese Arbeit wurde von dem Autor selbstandig und ohne Zehdhme anderer als der
angegebenen Quellen verfasst.
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18 Appendix I: SIC POVMs and Zauner’'s Conjecture

The following is a summary of the SIC POVM problem written e tauthor for the
Open Problems in Quantum Informatioollection maintained at [31].

18.1 Problem

We will give three variants of the problem, each being stesrthan its predecessor.
The terminology of problems 1 and 2 is taken mainly from [3Bpr problem 3 see
[33] and [34].

18.1.1 Problem 1 (SIC-POVMs)

A set ofd? normed vectorg|¢;)}; in a Hilbert space of dimensiahconstitutes a set
of equiangular linesf their mutual inner products

[(iles) I
are independent of the choiceif j. It can be shown [32] that

e the associated projection operators sum to a multiple dfwamd thus induce a
POVM (up to normalization) and that

e these operators are linearly independent and hence anyumuatate can be
reconstructed from the measurement statigtics= tr (|¢;)(¢;|p) of the POVM.

A POVM that arises in this way is callesymmetric informationally completer a
SIC-POVMfor short.

The most general form of the problemis: decide if SIC-POVMists in any dimension
d.

18.1.2 Problem 2 (Covariant SIC-POVMSs)

A vector|¢) is called afiducial vectomwith respect to the Heisenberg group if the set

{w(p,q) 1)@l wp. )}, o 4y (189)

induces a SIC-POVM. Such a SIC-POVM is said todveup covariant The defini-
tion makes sense for any group of order at le#st However, we will focus on the
Heisenberg group in what follows.

The problem: decide if group covariant SIC-POVMs exist ig dimensiond.

18.1.3 Problem 3 (Zauner’s Conjecture)

The normalizer of the Heisenberg group within the unitati¢g) is called theClifford
group. There exists an elementof the Clifford group which is defined via its action
on the Weyl operators as

zw(p,q)zt = wlg—p,—p). (190)
Zauner’s conjecture, as formulated in [34], runs: in anyetisiond, a fiducial vector
can be found among the eigenvectors of
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18.2 Background

Besides their mathematical appeal, SIC-POVMs have obvamudications to quan-
tum state tomography. The symmetry condition assurestiegidssible measurement
outcomes are in some sense maximally complementary.

18.3 History and Partial Results

¢ In the context of quantum information, the problem seemsate@tbeen tackled
first by Gerhard Zauner in his doctorial thesis [33] in 1998.00r knowledge,
the results were neither published nor translated intoigmglvhich caused some
confusion in the English literature, as to what Zauner hadadly conjecturefi
Zauner analyzed the spectrumzofHe listed analytical expressions for fiducial
vectors in dimension 2, 3, 4, 5 and numerical expressions foi6, 7. He noted
that for dimension 8 an analytic SIC-POVM is known, which dvariant under
the action of the threefold tensor product of the two dimenal Heisenberg

group.

e Wide interest in the problem arose with the 2003 paper by Reheal. [32].
Building on concepts fronframe theory the authors reduced the task of nu-
merically finding fiducial vectors to a non-convex globalioptation problem.
Using this method, they presented numerical fiducial vedimrall dimensions
up to 45 and counted the number of distinct covariant SIC-M®Wp to dimen-
sion 7. The question of whether those vectors were eigesstdta Clifford
operation was left open (but see below). Further, four gsoogher than the
Heisenberg group were numerically found to induce SIC-P@\iMhe sense of
(189).

The authors showed that a SIC-POVM corresponds $pleerical 2-desigh
The same assertion was proven by Klappenecker and Rotte]dbj and was
apparently known to Zauner (see Remark 3 in [35]).

e In [36] Grassl used a computer algebra system capable of@jerdalculations
to prove Zauner’s conjecture far= 6. He remarked that elements of the Clif-
ford group map fiducial vectors onto fiducial vectors. Builglion that obser-
vation, he could account for all 96 covariant SIC-POVMs tlate reported to
exist ford = 6 in [32].

e Appleby in [34] gave a detailed description of the Cliffortbgp and extended
it by allowing for anti-unitary operators. He verified thhethumeric solutions
of [32] were compatible with Zauner’s conjecture and anadlytheir stability
groups inside the Clifford gropAppleby goes on to present analytical expres-
sions for fiducial vectors in dimension 7 and 19 and specifigsfinite sequence
of dimensions for which he conjectures that solutions cafobed more easily.

e Inspired by a construction that links finite geometries to B&Jthere have been
some speculations by Wootters about whether SIC-POVMse#inked to finite

“Refer e.g. to the first vs. the second version of [34] on thévas¥rver.

5A finite setX of unit vectors is a-designif the average of ant:th order polynomial oveiX is the same
as the average of that polynomial over the entire unit sphere

6The same results were derived in Section 8.
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affine planes [37]. The same line of thought was pursued bygBson and
Ericsson in [38]. However, the existence of such a constmeemains an open

problem. The results by Grassl are of some relevance hereisasnown that
affine planes of order 6 do not exist.

82



References

[1] D. JungnickelFinite fields.(BI-Wiss.-Verl., Mannheim, 1993).
[2] B. Huppert,Endliche Gruppen(Springer, Berlin, 1967).

[3] E. Wigner,On the Quantum Correction For Thermodynamic Equilibridthys.
Rev.40, 749 (1932).

[4] W.K. Wootters,A Wigner-Function Formulation of Finite-State Quantumétite
anics Annals of Physicd67, 1 (1987).

[5] U. LeonhardtQuantum-State Tomography and Discrete Wigner Functtys.
Rev. Let.74, 4101 (1995).

[6] P.Bianucci, C. Miquel, J.P. Paz, and M. Saracddiscrete Wigner functiosn and
the phase space representation of quantum compuaesnt-ph/0106091.

[7] J.P. PazDiscrete Wigner functions and the phase space representafiquan-
tum teleportationquant-ph/0204150.

[8] N. Mukunda, S. Chaturvedi, and R. Simafvigner distributions for non Abelian
finite groups of odd ordeiquant-ph/0305127.

[9] K.S. Gibbons, M.J. Hoffman, and W.K. WootteBiscrete phase space based on
finite fieldsPhys. Rev. A70, 062101 (2004), quant-ph/040115.

[10] A. Vourdas,Quantum systems with finite Hilbert spaBep. Prog. Phy$7, 267
(2004).

[11] A.S. Holevo, Probabilistic and statistical aspects of quantum thediyorth-
Holland Publ. Co., Amsterdam, 1982).

[12] M. NeuhauserAn Explicit Construction of the Metaplectic Representatwer
a Finite Field.Journal of Lie Theory1 2, 15 (2002).

[13] G.B. Folland Harmonic analysis in phase spagerinceton Univ. Pr., Princeton,
1989).

[14] W. Rudin,Fourier analysis on groupgWiley-Interscience, New York, 1990).

[15] B. Simon,Representations of fintie and compact gropsnerican Mathematical
Society, Providence, Rhode Island, 1996).

[16] T. Felbinger, gmatrix: A Package for Quantum Information Theory
http://library.wolfram.com/infocenter/MathSourcefiB3

[17] M. Hein, J. Eisert, and H.J. Briegdljulti-party entanglement in graph states
Phys. Rev. A69, 06231 (2002), quant-ph/0206171.

[18] D. Schlingemann,Quantum error-correcting codes associated with graphs
guant-ph/0012111, D. Schlingemar8tabilizer codes can be realized as graph
codesquant-ph/0111080.

[19] D. SchlingemanrCluster states, algorithms and graplgiant-ph/0305170.

83



[20] J. Dehaene and B. De Modrhe Clifford group, stabilizer states, and linear and
guadratic operations over GF(2Phys. Rev. A68, 042318 (2003).

[21] R. Berndt, R. Schmid&lements of the representation theory of the Jacobi Group.
(Birkh&auser, Basel, 1998).

[22] M. Van den Nest, J. Dehaene, and B. De Mdarcal invariants of stabilizer
codesqguant-ph/0404106.

[23] M. Vanden Nest, J. Dehaene, and B. De Mddre invariants of the local Clifford
group.Phys. Rev. A71, 022310 (2005), quant-ph/0410035

[24] M. Van den Nest, J. Dehaene, and B. De Mdamjte set of invariants to charac-
terize local Clifford equivalence of stabilizer statgsiant-ph/0410165.

[25] M. Van den Nest, J. Dehaene, and B. De Mdon local unitary versus local
Clifford equivalence of stabilizer stateguant-ph/0411115.

[26] M. A. Nielsen, I.L. ChuangQuantum computation and quantum information.
(Cambridge University Press, Cambridge, 2000).

[27] E. M. Rains, Quantum Codes of Minimal Distance Twguant-ph/9704043
(1997).

[28] H. Aschauer, J. Calsamiglia, M. Hein, and H. J. Briegefcal invariants
for multi-partite entangled states allowing for a simpleta@mglement criterion.
Quant. Inf. Comp. 4, 383 (2004), quant-ph/0306048.

[29] J. SchwingerUnitary Operator Bases?roc. NAS 46, 570 (1960).

[30] A. Bouchet, Recognizing locally equivalent graphBiscrete Math.114, 75
(1993).

[31] O.Kruger, R.F. Werner (editorgppen Problems in Quantum Informatiayuant-
ph/0504166, http://www.imaph.tu-bs.de/qi/problems/.

[32] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Ca8gsmetric Informa-
tionally Complete Quantum MeasurementsMath. Phys. 45, 2171 (2004) and
guant-ph/0310075 (2003).

[33] G. Zauner,Quantendesigns — Grundziige einer nichtkommutativen Dibsg
ory, Doctorial thesis, University of Vienna, 1999 (availableline at
http://www.mat.univice.ac.at/"neun/papers/physpapéml).

[34] D. M. Appleby,SIC-POVMs and the Extended Clifford Groguant-ph/0412001
(2004).

[35] A. Klappenecker, and M. Rottelekjutually Unbiased Bases are Complex Pro-
jective 2-Designsquant-ph/0502031 (2005).

[36] M. Grassl,On SIC-POVMs and MUBs in dimensiondbiant-ph/0406175 (2004).

[37] W. K. Wootters,Quantum measurements and finite geomejnant-ph/0406032
(2004).

[38] I. Bengtsson, and Asa Ericssdviutually Unbiased Bases and The Complemen-
tarity Polytope quant-ph/0410120 (2004).

84



