- **[P16]** We aim to prove that languages recognized by randomized Turing machines are contained in the second level of the polynomial hierarchy. More precisely: BPP $\subset \Sigma_2^p \cap \Pi_2^p$ . (Intuitively, we have to show that the "expressive power" of " $\exists -\forall$ -statements" is great enough to encode the statement that a BPP-machine will accept its input. That's conceptually not unlike e.g. the Cook-Levin proof about the expressiveness of Boolean formulas).
  - (1) In one sentence, why is it sufficient to establish that BPP $\subset \Sigma_2^p$ ?
  - (2) Let  $L \in BPP$ . I.e. there exists a TM M and a polynomial q such that

$$x \in L \Rightarrow \Pr_{r \in \{0,1\}^{q(|x|)}}[M(x,r) \operatorname{accepts}] > 1 - \delta$$
 (1)

$$x \notin L \Rightarrow \Pr_{r \in \{0,1\}^{q(|x|)}}[M(x,r) \operatorname{accepts}] < \delta.$$
 (2)

In the definition of BPP,  $\delta$  is chosen to be 1/3. However, from sheet 4, we know that one can assume that  $\delta = 2^{-|x|}$ , which we will do from now on. Let n = |x| be the length of the input and m = q(|x|) the number of random bits. Let  $S_x$  be those random bits r for which M accepts the input pair  $\langle x, r \rangle$ . Re-formulate (1) and (2) as statements about the size  $|S_x|$  of  $S_x$ .

(3) Let  $k = \lceil \frac{m}{n} \rceil + 1$ . The " $\exists - \forall$ -statement" mentioned in the introduction will be:

 $\exists u_1, \dots, u_k \{0, 1\}^m \quad \text{such that } \forall r \in \{0, 1\}^m : \ r \in \bigcup_{i=1}^k (S_x + u_i).$ (3)

Here,  $S_x + u_i$  is the set  $\{s + u_i | s \in S_x\}$  where the addition of vectors in  $\{0, 1\}^m$  is element-wise and modulo 2. The easy direction is this: Show that if  $x \notin L$  then  $|S_x|$  is small enough that (3) is false.

(4) The slightly more difficult case consists in showing that if  $x \in L$ , then (3) is true. We need to show that there exists a choice  $u_1, \ldots, u_k$  such that the union of the shifted sets  $S_x + u_i$  equals all of  $\{0, 1\}^m$ . The difficulty in proving the existence lies in the fact that we know nothing about the structure of  $S_x$ , other than a lower bound on its size. To anyway establish the existence claim, we employ the (fantastic!) probabilistic method: we'll prove that a random choice of  $u_i$ 's has a non-zero chance of working. Hence there exists at least one working set of vectors (even if it remains totally unclear what that set might be).

So assume  $x \in L$  and let the  $u_i$  be a uniformly drawn random vectors in  $\{0,1\}^m$ . Fix one  $r \in \{0,1\}^m$ . What is the probability that  $r \notin (S_x + u_i)$  (Hint:  $r + u_i$  is uniformly distributed)? From that, show that the probability that  $r \notin \bigcup_{i=1}^k (S_x + u_i) \leq 2^{-nk} \leq 2^{-m}$ (Hint: use the fact that the  $u_i$  are independent). Use this in turn to prove that the probability that there exists any r such that  $r \notin \bigcup_{i=1}^k (S_x + u_i)$  is smaller than one. (Hint: look up "union bound" or "Boole's inequality"). Complete the proof from here.

Note: The use of randomized arguments to prove a non-random statement ( $x \in L \Rightarrow$  (3) true) may be surprising. It is, in fact, an *extremely* useful and fairly modern mathematical proof technique (going back to Erdősz). It pays to thoroughly understand and appreciate it!