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[P9] (Approximating circuits). The definition of the quantum Fourier transform involves the
gates

Rk =

[
1 0

0 e2πi2
−k

]
which differ from the trivial time evolution (given by the identity matrix) only by an ex-
ponentially small quantity 1−e2πi2−k

. This might be a source of concern: does a quantum
algorithm require exponentially precise control? Here, we will show that this is not the
case: small errors in the gates will lead only to small differences in the success probability
of the algorithm. (And hence leaving out the Rk’s for large k does not significantly alter
the QFT circuit).

(1) Recall the operator norm of a matrix A is

‖A‖∞ = max
φ
‖A|φ〉‖ = max

φ,ψ
〈ψ|A|φ〉,

where the respective maximizations are over normalized vectors ‖φ‖ = ‖ψ‖ = 1. Show
that the operator norm satisfies the triangle inequlaity ‖A+B‖∞ ≤ ‖A‖∞+‖B‖∞. Show
that the operator norm is unitarily invariant : if U is a unitary, then ‖AU‖∞ = ‖UA‖∞ =
‖A‖∞.

(2) Let U1, U2 be two ideal quantum gates. Suppose we manage to engineer V1, V2, which
are close to the U ’s in the sense that ‖Ui−Vi‖∞ ≤ ε. Using the two properties established
above, show that

‖U2U1 − V2V1‖∞ ≤ 2ε.

(Of course, by induction, this implies that if a circuit consists of n gates Ui realized to
within precision ε each, then the total error of the circuit will not exceed nε.)

(3) Lastly, let A be the observable used to read out the result of the computation.
We assume that ‖A‖∞ = 1 (optional problem: convince yourself that that’s true for all
examples we have looked at so far). If |ψ〉 is the initial state of the computation, U the
ideal unitary of the circuit, V our approximation to it, then the read-out error is∣∣∣trAU |ψ〉〈ψ|U † − trAV |ψ〉〈ψ|V †

∣∣∣.
Prove that this error is no larger than 2‖U − V ‖∞. (5 P.)

[P10] In order to understand the quantum factoring algorithm and the RSA public key cryp-
tosystem (the one supposedly making the Internet secure), we’ll need to look at some
basic number theory. All variables used in this exercise (a, b, x,N, r, . . .) will be assumed
to be integers. Let N be positive. Then it’s easy to see that every x is uniquely of the
form

x = kN + r,

where r ∈ [0, N − 1] is the remainder obtained when dividing x by N . In the situation
above, we say that “x is congruent to r modulo N”, or “x = r (modN)”.

In the lecture, we’ll treat Euclid’s algorithm. Among other things, it achieves the follow-
ing: given a, b, Euclid’s algorithm can efficiently compute x, y such that

ax+ by = gcd(a, b),
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where gcd(a, b) is the greatest common divisor of a and b. Two integers a, b are co-prime
if gcd(a, b) = 1.

(1) Use the above presentation of gcd(a, b) to show that if a and b are co-prime, then there
is an integer a−1 such that aa−1 = 1 (mod b). (This number is called the multiplicative
inverse of a modulo b). Show that gcd(a, b) = 1 is also necessary for a multiplicative
inverse of a modulo b to exist.

(2) Let p be a prime number. Show that, for all k ∈ [1, p− 1], it holds that(p
k

)
= 0 (mod p).

(3) (Fermat’s Little Theorem). Let p be prime and a be any integer. Show that

ap = a (mod p).

(Hint: Prove the claim by induction. For the induction step a→ (a+ 1), use the previous
result). Use (1) to show that if, moreover, a is not divisible by p, then ap−1 = 1 (mod p).

(5 P.)


