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www.qc.uni-freiburg.de/teaching Due: June 13th

(Approximating circuits). The definition of the quantum Fourier transform involves the

gates
1 0
Ry = [ 0 e2mi27" 1

which differ from the trivial time evolution (given by the identity matrix) only by an ez-
ponentially small quantity 1 — 227" This might be a source of concern: does a quantum
algorithm require exponentially precise control? Here, we will show that this is not the
case: small errors in the gates will lead only to small differences in the success probability
of the algorithm. (And hence leaving out the Ry’s for large k does not significantly alter
the QFT circuit).

(1) Recall the operator norm of a matrix A is

Al = max | A16) | = max(w|Alg),

where the respective maximizations are over normalized vectors ||¢|| = ||| = 1. Show
that the operator norm satisfies the triangle inequlaity |A+ Blloo < ||A]lco + | B|so- Show
that the operator norm is unitarily invariant: if U is a unitary, then || AU || = ||[UA||o =
[A]-

(2) Let Uy, Uy be two ideal quantum gates. Suppose we manage to engineer V;, V4, which
are close to the U’s in the sense that ||U; — V|| < €. Using the two properties established
above, show that

|UUy — VaViloo < 26

(Of course, by induction, this implies that if a circuit consists of n gates U; realized to
within precision € each, then the total error of the circuit will not exceed ne.)

(3) Lastly, let A be the observable used to read out the result of the computation.
We assume that [|A||.c = 1 (optional problem: convince yourself that that’s true for all
examples we have looked at so far). If |¢) is the initial state of the computation, U the
ideal unitary of the circuit, V' our approximation to it, then the read-out error is

trAU ) (|UT — teAV [9) (9] V1]

Prove that this error is no larger than 2||U — V|| «.

In order to understand the quantum factoring algorithm and the RSA public key cryp-
tosystem (the one supposedly making the Internet secure), we’ll need to look at some
basic number theory. All variables used in this exercise (a, b, z, N,r,...) will be assumed
to be integers. Let N be positive. Then it’s easy to see that every x is uniquely of the
form

xr=kN +r,

where r € [0, N — 1] is the remainder obtained when dividing x by N. In the situation
above, we say that “x is congruent to r modulo N”, or “x =7 (mod N)”.

In the lecture, we’ll treat Fuclid’s algorithm. Among other things, it achieves the follow-
ing: given a, b, Euclid’s algorithm can efficiently compute z,y such that

ax + by = ged(a, b),
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where ged(a, b) is the greatest common divisor of a and b. Two integers a, b are co-prime
if ged(a,b) = 1.

(1) Use the above presentation of ged(a, b) to show that if a and b are co-prime, then there
is an integer a~! such that aa™' =1 (modb). (This number is called the multiplicative
inverse of a modulo b). Show that gcd(a,b) = 1 is also necessary for a multiplicative
inverse of a modulo b to exist.

(2) Let p be a prime number. Show that, for all £ € [1,p — 1], it holds that
(Z) =0 (modp).

(3) (Fermat’s Little Theorem). Let p be prime and a be any integer. Show that
a’? =a (modp).

(Hint: Prove the claim by induction. For the induction step a — (a+ 1), use the previous
result). Use (1) to show that if, moreover, a is not divisible by p, then a?~! =1 (mod p).
(5P.)



