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[P11] (RSA public key cryptography). We need two results that will be presented in the lecture:

The first is Euclid’s algorithm as indicated on the previous sheet. The second fact is as
follows: let ¢(n) be the number of integers in [1,n — 1] which are co-prime to n (the
function ¢ is Euler’s totient function). Then if a is co-prime to n, then a®™ = 1 (modn).

To send a secrete message from Bob to Alice, the parties perform the following protocol:

1. Alice creates two large random prime numbers p, q. Let n = pq.

2. Alice chooses a random integer e that is relatively prime to n. She computes the mul-
tiplicative inverse d of e modulo ¢(n) (Euclid’s algorithm). Alice publicly announces
the pair (e,n) (the public key).

3. Suppose now Bob wants to send a message, m, to Alice. Assume that m is a number
smaller than n (if not, break its binary representation into pieces of log,n bits
each and encode every piece separately). Bob computes m® (modn) and publicly
announces it.

4. Alice computes (m®)? (modn).

In this exercise, we will prove that Alice recovers the message by Bob. A third observer,
Eve, is assumed to have access to all communications between Alice and Bob (i.e. to e, n,
and m® (modn)). We will argue that it is probably difficult for Eve to learn m, unless she
operates a quantum computer.

(1) What is ¢(n)? Why is there an efficient way for Alice to compute ¢(n) (“efficient”
means polynomial in the number of bits of n)? Convince yourself that there is no obvious
efficient way for Bob and Eve to do the same (no written answer needed here, of course).

(2) Assume for the moment that m is co-prime to n. Show that (m¢)? = m (modn),
so that Alice recovers the message in this case. (Hint: use the “second fact” provided
above).

(3) The remaining case makes use of the (reverse direction of the) Chinese Remainder
Theorem: if x = m (mod p) and x = m (mod ¢) then x = m (mod pq). Prove that. (Hint:
show that if m’ is some number fulfilling the first two equations, then it it differs from m
only by a multiple of pq).

(4) Now assume that m and n are not co-prime. Show that in this case, m is divisible
by either p or ¢, but not by both. Without loss of generality, assume that p divides n.
Prove that m*® = 0 (mod p) and m* = m (mod ¢) (use Fermat’s Little Theorem). Now
use (3) to establish that also in this case, (m®)? = m (mod n).

(5) Show that if Eve could compute prime factorizations efficiently (which quantum com-
puters can), she could efficiently compute d and hence break the cryptosystem. There
is a different attack Eve could mount with the help of a quantum computer. As we
will see shortly, quantum mechanics allows us to solve the order finding problem effi-
ciently: Assume that a function f is periodic, in that there exists a number r such that
f(x) = f(z+r) for all z. The order finding problem is to find r from f. Assume Eve could
solve the order finding problem for the function f(z) = (m®)® (modn). Assume further
that e is co-prime to the solution r (this is always true, as a consequence of Lagrange’s
Theorem, but we won’t show that here). Let d’ be the multiplicative inverse of e modulo
7. Show that (m®)? = m (modn). (Hint: use f(r) = £(0)).



