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Abstract

The main objective of this thesis are POVM-norm constants. Such
constants allow for comparing the optimal bias achievable by an actual
POVM measurement to Helstrom's ideal one. We present two novel meth-
ods of calculating or at least bounding these constants. Our methods are
universally applicable and use well established computational concepts
such as semidefinite programming and computational geometry. This
allows for an explicit implementation of our algorithms. One method
is particularly well suited for the special case of exactly informationally
complete POVMs (e.g SIC-POVMs) for which explicit constants can be
readily obtained.
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Figure 1: This ABC triplet ambigram illustrates how a single object can cast
various kinds of shadows. The shadow’s form solely depends on the position of
the light source. The graphic has been taken from [2].

Abstract

The sketch on the cover illustrates Plato’s allegory of the cave. In
his dialog Politeia (the Republic) the protagonist Socrates introduces the
following Gedankenexperiment. A group of people (prisoners) have spent
their entire life at the bottom of a cave. By chains they are forced to face
the cave’s wall without being able to turn around. Hence, they cannot
see the large fire burning behind their backs. They only see its reflection
on the wall in front of them. Between the fire and the prisoners there is a
roadway passing. Along this path, people (puppeteers) carrying various
things walk by. The carried objects cast shadows on the cave’s wall. The
prisoners can watch these shadows, but are not aware of their origin. Since
these people cannot see anything else, the shadows — and not their origin
— constitute reality for them.

Plato uses this allegory in order to illustrate his concept of “platonic
ideas”. In my opinion, this setting also illustrates the limitations of quan-
tum mechanical experiments very well. Measuring a quantum state allows
us to access the state’s probability outcome vector and not the state itself.
This situation strongly resembles the allegory of the cave. Through an
experiment, we can only see the a shadow of the state, not the state itself.
Consequently, the question of quantum state discrimination corresponds
to recognizing an object by only having access to some shadow that it
casts. This task is obviously more difficult than recognizing the original
object directly. In addition, it strongly depends on the position of the
light source (or equivalently: the shadow’s form). Figure 1 illustrates how
one object can indeed cast various types of shadows. Norm constants —
the main objective of this thesis — allow for quantifying this recognition
difficulty for arbitrary “light source positions” (experiments) by compar-
ing it to the difficulty of recognizing the original object. I consider this
allegory to be very illustrative and beautiful which is why I decided to
start my thesis with it.
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1 Introduction

The scope of this thesis is state discrimination, where one aims to distinguish
two quantum states p and ¢ with high probability. At the very heart of this
field lies Helstrom’s theorem [3] which states that the minimal error probability
of any discrimination procedure is given by Pgestrom = 1 — 1|/ — 5||;. Here
[I-]l1 denotes the trace norm. This corresponds to an optimal bias of

1
ﬂHelstrom - §||P - UHla

provided that any physical measurement can be implemented. In all practical
situations this ideal requirement cannot be met. It is therefore natural to con-
sider the situation, where we want to do state discrimination using non-universal
measurement devices. In particular, let us assume that we only have access to
one measurement apparatus that is given by a single informationally complete
POVM {M;};_,. Therefore, the only way to access our states p and o is via
our measurement {Mj},_,. We can formulate this situation mathematically by
identifying the measurement procedure with a linear mapping

M: D(X) — R,
p o= Y|kt (Mgp)
k=1

This function maps density operators onto probability outcome vectors. Our
measurement device only provides access to the vectors p = M (p) and ¢ =
M (o). The optimal bias achievable for distinguishing these vectors is given by
the maximum likelihood rule and amounts to

1 1
ﬂM = EHP - Q||l1 = §||M (p - 0) ”117

where ||.||;, denotes the l;-norm. It is natural to compare this actual bias to
Helstrom’s ideal one. One way of doing so is to search for constants A, u > 0
that allow for relating both biases via an inequality chain

Alp =l < Mp=a)lh <pllp -0l Vp,o € D(X).

Note that the difference of arbitrary quantum states corresponds to an arbitrary
(bounded) traceless hermitian operator. Thus we can rewrite this sandwich
inequality:

AMX | S IMX) 1L L pll Xl VX € Herm (X) with tr (X) =0. (1)

Omitting the tracelessness requirement yields another inequality relation with
looser bounds A and j:

AIX | < M) |h < AllX ] VX € Herm (X). 2)



Note that obviously A < X and p < fi. W. Matthews, S. Wehner and A. Winter
introduced the traceless version of this quantity in [4] and pointed out that the
bounded object actually does constitute a norm

IX[pm = [M(X) |1 VX € Herm (&)

on the finite dimensional vector space Herm (X). From this point of view,
statement (2) is nothing but the fundamental fact that all norms are equivalent
on finite dimensional vector spaces. In particular, this implies that the constants
A and § (and thus A and p as well) are nontrivial. W. Matthews and his
collaborators could show that the constant A in (1) is furthermore related to its
analogue A in (2) via
%/\ <A< A (3)

Therefore these two constants are equivalent up to a multiplicative factor of
2. In addition, the relation u < i < 1 obviously holds. We present a novel
geometric and intuitive proof of relation (3) in subsection 4.2.5.

The constants A and p have operational significance due to relation (1).
Indeed they relate the optimal measurement bias S to the universally optimal
Helstrom bias Sgelstrom-

e The constant A\ can be interpreted as a worst case promise for the mea-
surement M: For any two states p,o € D (X), the optimal measurement
bias S is at least A\-times as well as the Helstrom bias Suelistrom-

e The constant p serves as a bound on optimal performance: For any two
states p,o € D (X) the optimal measurement bias S is at most p-times
as well as Bielstrom (Where p < 1).

Such a worst case promise A is particularly important for the universally ap-
plicable measurements that various types of quantum state tomography [5, 6]
predict. Hence, it is natural to look for procedures that permit calculating — or
at least bounding — such norm constants efficiently. This is precisely the scope
of our work. First steps into this direction were done by W. Matthews et al,
who analytically obtained bounds for the uniform POVM, 4- and 2-designs as
well as PPT and separable measurements in [4]. Their result for the uniform
POVM implies that A is upper bounded by a dimensional factor proportional
to ﬁ, where d = dim X. Therefore the norm constants A and X necessarily
depend on the dimension of the considered Hilbert space.

Apart from this, the authors are only aware of one other approach by D.
Reeb, M. J. Kastoryano and M. Wolf [7]. In their paper, the authors use
Hilbert’s projective metric in order to get a potentially nontrivial bound on
w for arbitrary POVM measurements. This metric is mathematically beautiful
and highly relevant as a theoretical tool, but has the drawback of seeming to be
hard to compute efficiently in many situations.

We present a different approach using polytope theory, quantum channel
concepts and semidefinite programming,.



For the sake of self-completeness, we devote chapter 2 to introducing the
mathematical and physical concepts that are important for our work.

Our approaches extensively use concepts from convex geometry. For this
reason we give an introduction to convexity in chapter 3.

In chapter 4 we present our contribution. The concepts of POVM norms and
POVM norm constants are properly defined in subsection 4.1. We furthermore
introduce an important auxiliary tool — inverse measurement mappings.

In section 4.2 we introduce our first approach which is of geometric nature. It
uses the fact that convex maximization over convex polytopes corresponds to
checking the function’s value at all the polytope’s vertices. This can be done effi-
ciently, provided that the number of vertices is not too large. Such a procedure
allows for evaluating A and X efficiently for exactly informationally complete
measurements. SIC POVMs constitute a subfamily of such measurements that
are endowed with an additional symmetry property. This symmetry allows us
to calculate A and A explicitly for arbitrary SIC POVMs. This result is original
and refines the bound presented in [4]. For a general POVM measurement, a
similar reasoning yields upper and lower bounds on the norm constants that can
be efficiently calculated. For obvious reasons, we call this procedure as polytope
approach.

In section 4.3 we present another approach, dubbed the diamond approach. It
is obtained by interpreting the measurement M as a channel. This allows for
relating the norm constants A and p to induced 1-norms of particular superop-
erators ®, and ®,. We give an explicit construction of these superoperators
that solely depends on {My},. Since the induced 1-norm seems to be hard to
compute, we use the diamond norm as a computationally efficient proxy. This
yields a nontrivial lower bound on A and a (possibly trivial) upper bound on
1 as well as a new interpretation for the diamond norm in terms of convex
relaxations.

We conclude our thesis with a summary (Chapter 5) and an appendix con-
taining a simple 1 qubit example calculation.

2 Mathematical and physical background

2.1 Basic notation and concepts

In our thesis we largely adopt Watrous notation [8, 9, 10, 11] for complex vector
spaces, operators and superoperators. The following summary of basic concepts
mainly contains material from eaedem sources.

2.1.1 States

The letters X, ), Z and W denote complex vector spaces of the form C" for
some n € N. Their elements are identified with n-dimensional column vectors.



For two such vectors z,y € X ~ C™ we define the standard inner product as
n
(z,y) = Zi‘z‘yi,
i=1

where the bar denotes complex conjugation. Using this scalar product, we define
the Euclidean norm as
[z]l2 = /(z,z)

for any € X. We denote the unit sphere in X
SX)={zeX: || =1},

and call the j-th standard vector in & e;.

2.1.2 Operators

For X = C™ and Y = C™ the complex vector space consisting of all linear
mappings A : X — ) is denoted L (X,)). Such mappings are called operators.
We identify this space with the space of complex n x m-matrices in the usual
way. For automorphisms L (X, X) we use the shorthand notation L (X). the
identity operator on L (X) is called Ix. For each A € L(X,)) we define the
adjoint operator A* € L (), X) to be the unique operator that satisfies

(z, Ay) = (A"z,y) Va,yeX.
The Hilbert-Schmidt product on L (X,)) is defined as
(A,B) =tr (A*B) VA,Be L(X,Y),

where tr : L (YY) — C denotes the trace operator. By identifying any vector
r € X with the linear mapping ‘ket”

|z): C — X,

a — az,

we can define its adjoint “bra” to be the unique operator (z| : X — C which
satisfies (z||ly) = (z,y) Yy € X. We will encounter different kinds of operators
throughout this thesis.

e An operator X € L (X) is Hermitian if X* = X. We denote the set of
such operators Herm (X).

e An operator X € L(X) is traceless if tr (X) = 0. We call the set of all
such operators Li,—g (X))

e An operator P € L (X) is positive semidefinite if it is Hermitian and all
of its eigenvalues are nonnegative. The set of such operators is denoted
Pos (X). We will show later on that Pos(&X’) represents an important
convex cone in Herm (X).



e An operator P € L (X)) is positive definite if it is positive semidefinite and
all eigenvalues are strictly positive. The set of such operators is denoted
Pd (X). Note that all elements of Pd (X)) are invertible.

e An operator p € L (X) is a density operator if it is both positive semidef-
inite and has normalized trace: tr(p) = 1. The set of such operators is
denoted D (X).

e A density operator p € D (X) is pure if and only if tr (p?) = 1. This is
equivalent to demanding rank 1. Such operators can always be represented
as p = |z)(z| for some x € X.

e An operator U € L(X) is unitary, if U*U = Iy. The set of unitary
operators is denoted U (X).

For p € Ny and an arbitrary operator A € L(X,)) the Schatten-p-norm is
given by

1Al = {tr (JA”)}> . (4)

For this thesis 3 basic operator norms are important. They are defined for any
element A € L (X,)).

e The trace norm (p = 1): ||All1 = tr(]4|), where |A] = VA*A. For
X € L(X) the following useful formula holds:

X|h = X)|.
X1 Ug%)w )| (5)

e The Hilbert-Schmidt norm (p = 2): ||A|l2 = /(A, A). It is sometimes also
called Frobenius norm.

e The operator norm (p = 00): [[Allc = max,eg(x)[|Aull2. This norm is
also denoted spectral norm.

As already mentioned, these norms correspond to the Schatten-1, the Schatten-2
and the Schatten-oo norm and obey the following order:

[Alloo < [|Allz < [[Al, VA€ L(X,Y).

Further connections between these norms (duality, etc.) will be analyzed in
section 2.2.

2.1.3 Measurements

A (finite dimensional) measurement of a quantum system on a Hilbert space X
corresponds to a function of the form

M: {1,...,n} = Pos(X),

where {1,...,n} is the set of measurement outcomes. We identify the measure-
ment M with a collection of positive semidefinite operators {M}, : k € {1,...,n}}.
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We call this set POVM (positive operator valued measure). In order to be a
valid measurement, M has to obey

> M =1 (6)
k=1

Applying a measurement to a quantum state p € D (X') implies that an element
of {1,...,n} is selected randomly. The probability associated with each possible
outcome k € {1,...,n} is given by

pr = (My, p) = tr (Myp) .

After the measurement, the state p ceases to exist. Note that (6) guarantees
that p (p) € R™ is a probability vector (i.e.: p; > 0 for every i € {1,...,n} and
Yo pi=1) for any p € D (X).

A POVM-measurement {M;};_, is called informationally complete if it ac-
cesses all of Herm (X). By this we mean that for any non-vanishing (X # 0)
X € Herm (X) there exists at least one k € {1,...,n} such that tr (M, X) # 0.
In addition, we call a POVM ezactly informationally complete, if it is infor-
mationally complete and obeys n = dim Herm (X') (i.e the measurement is not
overcomplete). SIC POVMs constitute a special family of exactly information-
ally complete POVMs.

2.1.4 Purifications

A useful notion concerning positive semidefinite operators is that of a purifica-
tion. For any P € Pos (X) and any space ) that satisfies dim ())) > rank (P), a
vector of the form v € X ® ) is known to exist that satisfies

P = try (|lu{u]).

Here try denotes the partial trace over ). Such a vector u is called a purification
of P. Due to their defining property, it is necessary that any two purifications
u,v € X @ Y of one operator P € Pos (X) be unitarily equivalent. This means
that there exists U € U () such that v = (Ix ® U) u.

2.1.5 Distance measures for density operators

A density operator is the most general description of a quantum state and quan-
tifying the distance between such operators is crucial for state discrimination.
One such distance measure for two density operators p,o € D (X) is given by
the trace distance

5(p.0) =5 llo—oll,. ")

It has immense operational significance. Assume that our aim is to distinguish
one quantum state p € D (X)) from another state o € D (X) via an arbitrary
measurement. A famous theorem by Helstrom [3] states that the probability of
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correctly distinguishing p from o is related to d (p, o). In fact, the optimal bias
that can be obtained corresponds to %5 (p,0). The trace distance (7) therefore
provides an upper bound on the maximal bias that is achievable via any mea-
surement. Despite of having many nice properties, the trace norm has some
disadvantageous behavior as well. In particular it is in general not stable to-
wards purifications. Indeed, if u,v € X ® Y are purifications of p,o € D (X)
(dim () > max {rank (p) ,rank (0)}) it holds that

[} (ul = o) {ollly = lltry (ju) (ul = o) DIl = llp = all; -

The inequality sign above is typically strict. This implies that purifying two
systems in general amplifies their trace distance.

We now present another important distance measure that is stable towards
purifications. Given two positive semidefinite operators P,Q € Pos(X), we
define the fidelity between them as

rrQ = VPV, .
F(P,Q) = tr( \/TDQ\/TD>.

or equivalently (8)

The fidelity is symmetric and has a particularly simple appearance if one of the
states is pure:

F (|z)(z]|,0) = /{(z,02) Ve X, VoeD(X).

Note that in particular we have F (|x)(z|,|y){(y|) = |{z,y)| for any two pure
states with z,y € X. Therefore the fidelity can be seen as a generalization
of the quantum mechanical overlap. The fidelity is stable under the action of
tensor products. For any P;,Q; € Pos (&) and P, Q2 € Pos () the fidelity
obeys

F(PL®Q1,P,®Q2) =F (P1,Q1) F(P,Q2).

The following theorem underlines the stability of the fidelity towards purifica-
tions.

Uhlmann’s theorem: Let P, Q € Pos (X) and assume that both have rank at
most dim (). Let u € X ® Y be any purification of P, then

F(P,Q) = max{|(u,v)| : ve X @V, try (jv)(v]) = Q}.

The two distance measures (7) and (8) are related via the Fuchs-van de Graaf
inequalities. For any p,o € D (X) it holds that

1-46(p,o) < F(p,o)<+/1-=062(p,0) or equivalently (9)
17F(p,0') < 5(p70')§ v17F2(p,0'). (10)

The upper bound P (p,0) := /1 — F2(p,0) in (10) is called purified distance
and represents yet another distance measure. This metric plays a dominant role
in defining smooth entropies. We refer to [12] for further information.
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2.1.6 Superoperators

Linear mappings of operators are very important in quantum information in
general and our work in particular. Since operators map states onto states and
these mappings map operators onto operators, they are called superoperators.
We identify T'(X,)) with the space of all linear mappings ® : L(X) — L(Y).
For T (X, X) we simply write T'(X). The adjoint mapping ®* € T (), X) of
some ® € T'(X,)) is the unique mapping that obeys

(Y, ® (X)) = (& (V),X) VX eL(X), VY eL).

We call the trivial mapping from L (X) to itself I, x). The following classes of
superoperators will be important for our work.

e & T (X,Y) is Hermicity-preserving if ® (X) € Herm () for every X €
Herm (X).

® e T(X,)) is completely positive (CP) if it holds that
(@ @I w)) (P) € Pos (Y @ X)

for every choice of W ~ C* (k € N) and every P € Pos (X).

® € T(X,)Y) is trace-preserving (TP) if tr (® (X)) = tr(X) for every
XeL(X).

e T (X,)) is a quantum channel (CPTP) if it is both completely posi-
tive and trace-preserving .

® € T(X,)Y) is an entanglement breaking channel (EB) if it is has the
following form:

n
O (X) =) Ritr (MpX).
k=1
Here each Ry, denotes a density operator and {My};_, represents a POVM.
There are several possibilities of representing superoperators. We will restrict
ourselves to two of them and refer to [11] (Lecture 5) for a more detailed survey.

The Choi-Jamiolkowski representation maps a superoperator ® € T (X))
on the operator J (®) € L (Y ® X) defined as

n

J(@) =Y (i) @il

i,j=1

where we have assumed that X ~ C™ and Y ~ C™. The mapping J is a linear
bijection from T (X,Y) to L (Y ® X). The operator J (®) therefore provides a
convenient way of concretely representing superoperators as nm X nm-matrices.

It holds that
o & € T(X,Y)is Hermicity-preserving if and only if J (®) is Hermitian [15],
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e & T (X,))is completely positive if and only if J (P) is positive semidef-
inite |16, 17],

o & T (X)) is trace-preserving if and only if try (J (®)) = Lx.

Another useful way of representing superoperators is the Stinespring represen-
tation. Two matrices A, B € L(X,Y ® Z) are called a Stinespring pair of
deT(X,Y)if

®(X)=trz (AXB*) VX eL(X). (11)

An expression of the form (11) is called a Stinespring representation of ®.
Stinespring representations are never unique and always exist for dim (Z) >
rank (J (®)). For completely positive ®’s, one can choose Stinespring pairs that
obey A = B. In our work we will mainly use Stinespring representations. How-
ever Choi-Jamiolkowski representations will be important for obtaining a upper
(lower) bound for our sought for constants A (u) in subsection 4.3.4.

2.1.7 Distance measures for superoperators

In this subsection we present distance measures for arbitrary superoperators
® € T(X,)). The first quantity is the induced I-norm

@[l = max {[|® (X) 1 : | X[l <1}. (12)

Due to the convexity of the trace norm, this expression is easily seen to be
equivalent to
[@[]1 = max {|® (|z){y]) [l : =,y € S(X)}. (13)

Like any induced norm, expression (12) is submultiplicative. For ® € T (X,))
and ¥ € T (), Z) it holds that

QW] < ([ @[[1[[%]-

Unfortunately, the induced 1-norm is unstable (not multiplicative) with respect
to Tensor products. If we, for instance, combine the transpose mapping T €
T (X) and the identity I x) via a tensor product, we get:

1T @ Ipll, =7 >1 =T, T ll,

for any n > 2. This calls for a norm that does not admit this strange behavior.
Such a distance measure is given by the diamond norm. For any ® € T (X,))
we write

0o = 9@ Lo |, = max {0 © Lew, (@D, = wveS@Xox)}.

(14)

Tensoring with the identity has the effect of stabilizing this norm. Indeed it can

be shown that ||® ® HL(Z)||1 = ||®||, for any Z obeying dim (Z) > dim (X) and
for each ®; € T (X1,)1) and P, € T (X, )s) it holds that

191 @ Dalo = [|@1lo][P2flo-
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For a proof of these properties, we refer to [11] (Lecture 21).

In subsection 2.1.5 we have introduced the trace distance (7) which gives
an upper limit to state discrimination. One may consider a similar situation
involving channels rather than density operators. In this framework there is an
analogue of Helstrom’s theorem. In this theorem the trace distance is replaced
by the diamond norm. This attributes operational significance to expression
(14). Finally, we mention that the diamond norm of an arbitrary super-operator
can be calculated efficiently via an SDP. Such an SDP is presented in subsection
3.3.5.

The diamond norm can be seen as a stabilized generalization of the trace
distance. We now introduce a fidelity based distance measure for completely
positive superoperators. Let us define the mazimum output fidelity of two CP
maps g, P, € T (X,)) as

Finax (Po, ®1) = max {F (Po (po),, P1(p1)) : po,p1 € D(X)}. (15)

This quantity can also be calculated efficiently for arbitrary CP maps. A cor-
responding SDP is presented in subchapter 3.3.6.

We want to conclude this subsection with an astonishing relation between
(14) and (15). Let us assume that an arbitrary superoperator ® € T (X,)) is
given by a Stinespring pair A, B € L (X,Y ® Z)

O (X)=trz (AXB*) VX € L(X).

We define the following two channels:

Uy (X) = try(AXA"),
Uy (X) = try(BXB").
Then it holds that
[@lo = Fmax (Yo, ¥1) . (16)

For a proof of this equivalence we again refer to [11] (lecture 21). In subsection
3.3.6 we show that the maximum output fidelity can be evaluated via an SDP.
Therefore (16) provides another way of efficiently calculating the diamond norm
of an arbitrary superoperator ® € T (X,)).

2.2 Norms

In this section we use concepts and some notation from chapter 3. Let us
consider a finite dimensional real vector space V. A norm |.||y on V is a
function |||y : V — R obeying the following three properties Vv, w € V:

lavlly = la|llvlly VYaeR (positive homogeneity), (17)
lot+wly < vlly+llwlly (triangle inequality), (18)
vy =0 < wv=0 (non-degeneracy). (19)
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Functions of this form that obey (17) and (18), but not (19) are called semi-
norms.
Every norm defines a bounded, closed, convex, solid, and symmetric (K =
—K) set
B(ll.Iy) ={veV: |uly <1} (20)

which we call the norm ball of ||.||y. Conversely, every closed, convex, symmetric
set K induces a norm ||.|| g via

vk =inf{t >0: tv e K°}, (21)

where K° denotes the polar' of K. We refer to subsection 3.1.4 for more infor-
mation about polar sets. Therefore norms and convex, closed, symmetric bodies
of full dimension are equivalent descriptions. Seminorms also give rise to such
convex objects. On the contrary to proper norms, their “seminorm-balls” are
however unbounded.

Now let W be another real vector space and (.,.) : V x W — R shall denote
a duality. The bipolar theorem (applied to an arbitrary norm ball K) gives rise
to an important relation between polar norms:

[wllx = ma;{c(v,w) Yw € W, (22)
IS
[v][re = ur]ré%@,m Yo e V. (23)

In principle one has to take the supremum in these formulas. However, due to
the convexity of K and K°, we can safely replace it by a maximum. Formula
(22) can be readily derived by starting with the induced norm description (21):

lwlk = inf{t>0: twe K°}
= inf{t>0: (v,tw) <1Vve K}

= inf{t>0: (v,w><1Vv€K}

= sup{t>0: (v,w) <tVve K}
= fg}g(v,w>=5}nealg<<v7w>-

Equation (23) can be derived in a similar way.

Note that if we take V ~ W ~ Herm (X), (X,Y) = tr(XY) VX,Y €
Herm (X) and K = B(].]1) (the trace norm ball), formulas (22) and (23)
imply the famous “duality” relation? between trace- and operator-norm:

IX]: = max (X,Y) VX € Herm (X),
¥ lloo<1

[V = max (X,Y) VY €Herm(X).
IxIh <1

L Actually the canonical definition is given by ||v||xo = inf {t > 0: tz € K}. However the
bipolar theorem, which applies to (semi-) norm-balls, assures that definition (21) is equivalent
to this expression.

2 Actually this correspondence is a polarity relation, rather than a duality.
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These formulas can also be proved directly by applying the spectral theorem.
Since the l3-norm ball B (]|.||2) is self-polar, we furthermore get the following

formula for complex vectors (pick V.~ W ~ X, (z,y) = /D, Tiyi):

lz]|2 = max (z,y) Vze X. (24)
llyll2<1

We conclude this section with a few statements about norm optimization.
Norms are convex functions and norm minimization over a convex set can there-
fore be implemented efficiently. Norm maximization (over convex sets) on the
other hand is NP-hard in general. In order to illustrate this, we consider the
example maximizing the l>-norm in V' ~ R™ over a convex set K. We assume
without loss of generality that the convex set K is given as an affinely trans-

formed intersection of ellipsoids, i.e.:

1
K{xEV: Qtr(XPi)+<qi,x>+n§0Vi1,...,mandAa;b}

with P; € Pos (R"), ¢;, € R", r; e Rforalli=1,...,m and A € L (R",R™) as
well as b € R™. An algorithm for obtaining the negative squared optimal value
(—||lzopt]|3) is given by the following QCQP:

1
minimize §<z7 (-Iy) x),
1
x, Pix) + (gi,x) + 1, <0 fori=1,...m,

5
Az =b.

subject to

This problem is a non-convex QCQP (—Iy is not positive semidefinite) and thus
NP-hard in general.

However norm maximization is not always totally hopeless. The following
theorem, for instance, states that the computational complexity of maximizing
convex functions over polytopes scales linearly in the number of vertices. This
implies in particular that norm maximization over sufficiently simple polytopes
is indeed feasible.

Theorem Let f : U — R be a convex function with domain U C X that can be

efficiently evaluated for any « € U. Let furthermore K = conv (v1,...,v;),
K C U be a polytope that is characterized by [ vertices vq,...,v; € X.
Then

v ) = o S ()

Proof: The proof of this theorem is very simple. Let us pick an arbitrary
element z € K. Due to the definition of the convex hull (see subsection 3.1.2),
we can write this z as a convex combination of extreme points:

l l
mzZaivi with Zaizl and o; >0Vi=1...,L

i=1 =1
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Convexity of f therefore implies

l
S o fl) o= mex fle). D

This theorem can also be understood geometrically. The niveau set F :=
{zeU: f(z) <max;=1,..; f(vi)} CU is a convex set which contains all ex-
treme points vy,...,v; by construction. The minimality of the convex hull
thus assures K = conv {vy,...,v;} C F. Therefore K C F and furthermore
K N F # () holds by construction as well. However, these two properties assure
that the maximization of f over K indeed yields max;—1,.. ; f (v;).

One important consequence of this theorem is that convex maximization
over the /;-norm ball can be done efficiently in R™. B (||.||;,) corresponds to the
n-dimensional cross polytope which is fully characterized by its 2n vertices:

B(]|.|l;y) = conv {£eq,...,Len}.

Therefore a maximization corresponds to checking the function’s value at only
2n points. this can be of course done efficiently.

On the contrary to this encouraging result, maximizing convex functions
over other norm balls is often intractable. The [, -ball is a typical example for
this. Maximization becomes hard, because the hypercube

B(llh)={z€R": —1<z;<1Vi=1,...,n}

possesses 2" vertices. Therefore the above procedure requires checking a number
of points that is exponential in the dimensionality of the problem.

3 Convexity

The lion’s share of the work presented in this thesis belongs to the framework of
convex optimization. Therefore, we devote this chapter to introducing some ba-
sic concepts of convexity. However, we restrict ourselves to presenting concepts
that will later be used in our work. The basic convexity concepts are taken
from [18, 19], whereas the explicit SDP realizations at the end of this chapter
are due to J. Watrous [10, 11]. We refer to the first two sources for a detailed
introduction into the field of convexity.

3.1 Convex sets and convex functions

In this section we introduce the basic notion of convexity. The subsections
that treat properties of convex sets are strongly inspired by [18], whereas our
discussion of convex functions is taken from [19].
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3.1.1 Affine sets

The stage for the basic definitions of affine and convex sets is the Euclidean
space R™. For any two points x,y € R™, the line passing through both points
can be parametrized in the following way:

logy () =712+ (1—7)y forTeR. (25)

A set A C R” is an affine set if for arbitrary z,y € A and any 7 € R we
have I, , (7) € A. In words, this definition means that an affine set contains all
possible lines connecting two points of A. The idea of a line can be generalized
to higher dimensions. For a finite set of points {z1,...,2;} € R™ we call

1 l
T = E «;r;  where E a; =1, ai,...,a €R
i=1 i=1

an affine combination of {x1,...,2;}. It is easy to see that any affine set C
contains all possible affine combinations of its points. The set of all affine
combinations of all points from a set A C R" is called the affine hull of A. It
is denoted by aff (4). We note without proof that aff (A) is the smallest affine
set that contains A: If B is any affine set containing A, then aff (4) C B.

Affine sets can be seen as subspaces with a (possibly trivial) offset. By this
we mean that we can characterize an affine set A C R"™ via a subspace W C R"”
and an offset vector a € A C R"™:

A=a+W={c+w: weW}. (26)

Note that, in this characterization, a can be an arbitrary element of A. For a
short and elementary proof of this fact, we refer to [19]. Due to characterization
(26), it makes sense to define the dimension of an affine set A as the dimension
of the corresponding subspace W = A — a, where a can again be any element
of A. We can use this affine dimension to introduce a notion of dimension for
arbitrary sets: We define the affine dimension of a set A C R™ as the dimension
of its affine hull aff (A).

3.1.2 Convex sets

The definition of convex sets is very similar to the definition of affine sets (25).
However, rather than entire lines, only the line segment between two points is
relevant. A set K C R" is convez if Vz,y € K and V7 € [0, 1] we have

Tr+(1-7)y e K. (27)

Therefore a set is convex if and only if it contains each line segment between
two arbitrary points. This implies that affine sets are also convex, whereas,
conversely, any convex set K lies within the minimal affine set aff (K).
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Similar to above, this concept can be generalized in the following way. For
a finite set of points {z1,...,z;} € R", we call

l l
xzz:aixi where Zaizl and «o; >0Vi=1,...,1

i=1 i=1

a convex combination of x1,...,x; . For an arbitrary set A C R™, we call the
set of all convex combinations of all points the convez hull of A. It is denoted
by conv (A). We note without proof? that conv (A) is the smallest convex set
containing A: If B is any convex set containing A, then conv (A) C B. For the

set of points {z1,...,2;} from above we therefore have
conv (x1,...,x): = conv({z1,...,2})
1 1
= {xER” : lE:ZCWCu s.t. Zai =1, o > O}.
i=1 i=1

The idea of convex combinations can be generalized to include probability dis-
tributions (and therefore also infinite sums and integrals). However we will not
require these generalizations for our work.

In the following we will present some important families of convex sets.

3.1.3 Cones

We now introduce more general concepts that are defined for arbitrary vector
spaces V/, rather than requiring R™. We call a set C C V a cone if

0 € C and
ar € C(Cforall a>0andevery xz € C.

A cone is convez if for any two points z,y € C and any «,8 > 0 we have
az + By € C. For a finite set of points {z1,...,2;} € V, we call

1
x:Zaixi where a; >0Vi=1,...,1

=1

a comnic combination of x1,...,x;. We call the set of all conic combinations of
points from a set A C V the conic hull of A. It shall be denoted by co (A).
Similarly to the convex hull above, co(A) is the smallest convex cone that
contains A.

A cone C is pointed if C N (—C) = {0}. This criterion is equivalent to
demanding that C does not contain straight lines. We furthermore call a cone
solid if it has nonempty interior. We summarize all these properties by one
name:

3For a proof we refer to [18], Theorem 2.1.
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Proper cones: A cone C is called proper if it is closed, convex, solid and
pointed.

Let C CV be a cone. A set B C C'is called a base of C' if 0 ¢ B and for any
non-trivial point u € C (u # 0), there is a unique representation v = ab with
b € B and a > 0. We note without proof that the bases of a convex cone form
convex sets and vice versa.

Any convex cone C' C V defines an order on the vector space they live in.
We say that

z<cvy provided that y —xz € C and
x>0y provided that x —y € C.

However we will write < instead of < in cases where the underlying cone is
obvious. This order obeys properties that are familiar from ordinary inequalities:

e r >¢cxforany x € V.

e v <cyandy<¢c z then z <¢ z.

o If z <o yand a >0, then axr <¢ ay.

o If 21 <c y1 and x5 <o yo, then z1 + 22 < Y1 + yo.

All of these facts can be readily verified. Such orders are sometimes called gener-
alized inequalities and properties above make this nomenclature very plausible.
We give some important examples of such orders induced by a cone.

1. An order for Euclidean space R™: The positive orthant

RY ={zreR": 2; >0Vi=1,...,n}, (28)
which is obviously a convex cone, induces the following generalized in-
equality for elements © = (z1,...,2,) and y = (y1,...,yn) in R™

ry & z;<yVi=1,...,n.

2. An order for Hermitian n x n matrices Herm (X): The cone of positive
semidefinite matrices

Pos (X) = {X € Herm (X) : (z,A,z) > 0Vz € X} (29)

induces the following generalized inequality for elements A and B in
Herm (C™):
A<B & B-AcPos(X). (30)

This partial order plays an important role in the field of semidefinite pro-
gramming.

3. A more restrictive order for Herm (X): The set positive definite matrices
Pd(X) ={X € Herm (X) : (z,A,z) > 0Vz € X} (31)

does not constitute a cone (0 # Pd (X)) . However, it still induces the
following stricter inequality for elements A and B in Herm (X):

A<B & B-AePd(X) (32)
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3.1.4 Polar sets

In order to embed the concepts of polarity and duality into a general framework,
we need to introduce dualities.

Duality: Let V and W be real vector spaces. A non-degenerate bilinear form
() VxW-—=R (33)
is called a duality of V and W.

We note that this concept can be extended to topological vector spaces. How-
ever, we will not need this generalization for our work.

We now introduce the general concept of polarity assuming that we have
two vector spaces V' and W that are connected via a duality. Let A C V be an
arbitrary non-empty set. Its polar A° C W is defined to be the following set:

A°={yeR": (y,z) <1V e A}.

The polar can be thought of as a (non-unique) generalization of the orthogonal
complement. Indeed we have for a linear subspace L C V'

L°={weW: (v,w)=0Yv € V}.

In the special case V ~ W ~ R" and (z,y) = Y., z;y; this is indeed the
definition of the orthogonal complement L. In addition, the polar obeys many
properties that are typical for complements:

e If AC B, then B° C A°.

e For a union of sets {4;},.; we have (U;c; Ai)° = Nics 4S5

e For any a > 0 it holds that (ad)® = L A°,
All of these properties (including the next one) can be readily verified. Another
interesting feature of the polar is its convexity. The polar of an arbitrary set

A is a closed convex set that contains the origin. If the set A is itself already
convex, the following strong statement holds in addition.

Bipolar Theorem: Let A C R"™ be a closed convex set containing the origin.
Then (A4°)° = A.

For a proof of this theorem we refer to [18]. The concept of polarity is important
for relating norms. We have already exploited this in section 2.2.

3.1.5 Dual cones

A concept similar to polar sets are dual sets. On the contrary to the former,
dual sets are only defined for convex cones. Let {.,.) : V x W — R be a duality
of vector spaces and let C C V be a convex cone. The cone C* C W defined via

C:={weW: (v,w)>0WeC}
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is called the dual cone of C'. Similarly, if C' C W is a convex cone, its dual cone
C* C V is defined in an analogous way:

C*={veV: (vyw)>0Vwe C}.

Similar to polar sets, dual cones are always closed, convex and contain the
origin. They can also be seen as a generalization of the orthogonal complement,
because for a subspace L C V we again have

L'={weW: (Lwy=0VvVleL}.

Two of the polarity properties above, as well as the Bipolar theorem, also hold
for dual cones.

e If AC B, then B* C A*.
e For a union of sets {A;},.; we have: (U;c; A:)" = Nics A
e “Bipolar theorem™ For a proper cone C, we have (C*)* = C.

In analogy to the polar case, this underlines the interpretation of the dual as
another generalization of the orthogonal complement. Cones can be their their
own dual. We call such cones self-dual. Two prominent examples of self-dual
cones are the positive orthant (28) and the cone of positive semidefinite matrices
(29).

3.1.6 Polyhedra and Polytopes

A polyhedron P is defined to be the solution set of a finite number m of linear
inequalities:
P={zeR": (¢,z) < Bifori=1,...,m}. (34)

A polytope Q is defined to be convex hull of a finite set of points vy,...,v; € R™:
Q = conv (vy,...,v). (35)
Polyhedra and Polytopes are equivalent due to the following theorem.

Weyl-Minkowski Theorem: Any bounded polyhedron is a polytope and vice
versa.

Therefore we shall adopt the name polytope for both objects. The Weyl-
Minkowski theorem states that descriptions (34) and (35) can serve as equiva-
lent descriptions of the same geometric object. The former characterization is
called half-space characterization, whereas we refer to the latter as vertex rep-
resentation. This mirrors the fact that any polytope can either be seen as an
intersection of half spaces (characterization (34)) or as the convex hull of its
extreme points or vertices (characterization (35)). Both representations have a
very different geometric flavor and can have substantially different complexity
as well. The following two examples illustrate this.
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1. The cross polytope: The cross polytope or [;-norm ball

B([[-h) ={z e R : [lz[, <1}
can be easily characterized via its 2n vertices (vertex representation):
B (]|.|l) = conv (£eq,...,xe,),

where e; denotes the i-th standard basis vector. The cross polytope’s
(unique minimal) half space representation is given by

B(l) ={z €R": {c,z) <1, ¢ = (£1,...,£1)}. (36)

Here the vector ¢ actually stands for 2™ different vectors that give rise to
2" different inequalities in the half-space representation.

For our remaining observations it is necessary to introduce some terminol-
ogy. We say that a vector & € R™ ezactly satisfies the inequality (¢, ) < 1
if {¢,z) = 1. We furthermore call a set of [ inequalities {(c;, z) < bi}ézl
linearly independent if the vectors ci,...,¢; € R™ are linearly indepen-
dent.

Note that each vertex +e; exactly satisfies n linear inequalities of the
defining characterization? (36). This is no coincidence. On the contrary,
a fundamental theorem [18] (Chapter II, Theorem 4.2) shows that there
is a one-to-one correspondence between vertices and points that fulfill this
property.

In this spirit, we define the edges of any polytope to be the sets that
exactly satisfy n — 1 linear independent inequalities of a defining half
space characterization. It is easy to see that for bounded polyhedra these
sets actually correspond line segments. In the case of the cross polytope
the edges amount to the following family® of line segments that contains
4n (n — 1) elements:

(1) =7 (xe;) + (1 —7) (xej). (37)

Note that such an edge corresponds to a line connecting two vertices which
is very intuitive. Furthermore this set of edges is already complete, be-
cause a well known result from the literature [20, 21] states that the n-
dimensional cross polytope possesses exactly 4n (n — 1) edges. The obser-
vation that these line segments exactly fulfill (n — 1) linear independent
inequalities in (36) will become important in subsection 4.2.2.

4Indeed, pick for instance e;. Then ¢y := (1,...,1), c2 = (1,—1,1,...,1),...,cp :=
(1,...,1,—1) denote n linearly independent vectors of the type ¢ = (£1,...,41) that further-

more obey (c¢;,e1) = 1 Vi =1,...,n. Finding n such vectors for arbitrary e; is completely
analogous.

5Let us focus on the special case I3 (1) := Te1 + (1—7)e2. Then c2 = (1,...,1),
ez = (1,1,-1,1,...,1),...,¢en = (1,...,1,—1) constitutes a (n — 1)-dimensional linearly

independent family of vectors of the required type ¢ = (&£1,...,£1). Mentioning that
(i (r),c) =74+ (1 —7) =1Vr € [0,1] allows us to conclude that I; is indeed an edge
of B(]|.|[1). It is obvious that a similar argument holds for any other line of the type (37).
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Figure 2: This graphic visualizes the unit octahedron (3D [/;-norm ball) and the
unit cube (3D [,-norm ball) and was taken from [22]. Both objects are convex
polytopes and polar to each other.

2. The hypercube: The complexity of representing the hypercube (or l..-
norm ball)

B(l)lw) ={z€R": 0<2; <1Vi=1,...,n}

behaves exactly the other way round. Its vertex representation requires
all 2™ extreme points, whereas its half-space characterization is given by
the following 2n linear inequalities:

<€17$> S 17
<_€17.T> S 17
(ensz) < 1,
(—en,z) < 1

Hence, compared to the cross polytope, the complexity of the two repre-
sentations is reversed (2" versus 2n).

Note that the hypercube and the cross polytope are polar to each other in any
dimension. The 3 dimensional versions of the cross polytope and the hypercube
are depicted in figure 2. We conclude this subsection by stating the obvious fact
that both polytopes have full affine dimension n.
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3.2 Convex functions
3.2.1 Definition of convex functions

Let us consider an arbitrary vector space V. A function f: U — R, where
U C V is the functions domain, is convez if U is a convex set and Vx,y € U
and 7 € [0, 1] we have

flra+ (@ -7)y) <7f(@)+ QA —-7)f(y). (38)

A function f is called strictly convez if strict inequality holds in (38). We say
that a function f is concave if (—f) is convex, and f is strictly concave if (—f)
is strictly convex.

The following criterion for convexity is taken from [19] and very useful.

A function is convex if and only if it is convex when restricted to
any line that intersects its domain.

Convex functions are always continuous on the relative interior of their domain.
For the vector space V ~ C™ analytical formulas for determining convexity do
exist for differentiable functions. Although we will hardly ever use them, we
state two of them for the sake of completeness.

1. First-order conditions: A differentiable function f: U — R with domain
U C C” is convex if and only if U is a convex set and

f(y) > f(x) + <Vf (I),y7$> Vx,y € U> (39)

where (.,.) denotes the standard scalar product of C™.
Note that the affine function on the right hand side of (39) denotes the
first order Taylor expansion of f.

2. Second-order conditions: A twice differentiable function f: U — R with
domain U C C"™ is convex if and only if U is convex and

Af(x) =0, (40)

where Af () € L(C™) denotes the Hesse matrix in = and > corresponds
to the usual partial order >pggcn).

Note that criterion one implies that the first order Taylor expansion of a convex
function is a global underestimator. This allows us to obtain global information
(a global underestimator) from local information (f () + (Vf (z),y — z) at a
certain point x € U). Furthermore, (39) implies that a convex function has a
single global minimum at zo € U obeying Vf (z¢) = 0. These two properties
also apply to non-differentiable convex functions and are very useful for convex
minimization.
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3.2.2 Affine transformations

Affine transformations are one particularly important family of convex functions.
Recall that we have identified affine sets A with a vector space and an offset. In
the same spirit we define affine functions f to be linear functions with an offset,
ie.

f(z) = Az +b, (41)

where A: V — W is a linear transformation between vector spaces and b € W
is an offset. It can be easily seen that affine transformations preserve straight
lines. This implies that they also preserve convexity. Consequently, affine trans-
formations are convex as well as concave functions.

3.3 Convex optimization
3.3.1 Convex Optimization

Convex optimization studies the problem of minimizing convex functions over
convex sets. This objective is equivalent to maximizing concave functions® over
convex sets. Due to the “nice” properties of convex functions, this kind of opti-
mization is “easier” than a general one. For instance, we have already pointed
out in subsection 3.2.1 that convex functions allow for obtaining a global under-
estimator from local information alone. Convexity furthermore guarantees that
any local minimum is also a global one. Among others, these two properties
allow for tracking convex optimization problems computationally efficiently.

We now state convex optimization in its most general form. Let U be a
convex subset of a real vector space V' and let f: U — R be a convex function.
We then want to find z.,;, € U such that

f (xmin) = min {f (I) tre U} .
Alternatively, we can reformulate this aim in the following way:

minimize f(x)

subject to gi(x) <0 fori=1,...,m.

Here g; : V — R are convex functions that define U in the sense that U =
AP {ze Ve gi(w) <0},

Many contemporary methods allow for solving such convex optimization
problems efficiently. We refer to [19] for further information. In the next sub-
chapter we introduce a particularly important subfamily of convex optimization
problems: linear programming.

6Replacing a concave objective function f by (—f) — which is convex — and consequently
rendering maximization to minimization yields an equivalent convex minimization problem.
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3.3.2 General Linear Programming

Linear programming can be seen as the theory of general linear inequalities
and thus extends linear algebra. As we have seen in subsection 3.1.3, general
linear inequalities are induced by convex cones. Therefore this general theory
is sometimes called “conic linear programming”. We now introduce Barvinok’s
general framework of linear programming [18]. Let

<.,.>12 VaXWl — R and
<.,.>2: Vox Wy — R

be dualities connecting the vector spaces V; and W as well as Vo and W,. We
furthermore fix convex cones K1 C Vi and Ky C V5. By duality, these cones
give rise to dual cones Ki C W and K35 C Ws,. Let now

d: V=V
be a linear transformation, and let
D Wy = W,
denote its dual transformation, i.e:
(P (2),y)2 = (x,P" (y))1 VeV, Vye Ws. (42)

Finally, we pick some a € V; and b € V5. Now we are ready to state the general
form of a pair of linear programming problems.

Primal Problem:

Find ~v = inf(z,a);
subject to ®(z) >k, b,
x ZKl 0.
Dual Problem:
Find 8 =sup(by)s
subject to " (y) <k; a,
y 2Ky 0.

We call a point = € Vi primal feasible if it satisfies the required conditions
® (z) >k, band >k, 0. Similarly we call a point y € Wa dual feasible if it
satisfies the required conditions ®* (y) <k; a and y >x; 0. As a refinement,
we call a point x € Vi (z € Vo) strictly primal feasible (strictly dual feasible) if
the required inequalities hold strictly. We agree on setting 7 = +oo if there is
no primal feasible plan, whereas we set 5 = —oo if there is no dual feasible y.
We furthermore call = (or y) optimal if the infimum v (supremum ) is attained
at that point. The following theorem induces an order between any primal and
dual optimal solutions.
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Theorem (Weak Duality): For any primal feasible x € V; and any dual fea-
sible y € W5 we have

(z,a)1 < (b, y)e. (43)

Proof: Since x € V; is primal feasible and y € W5 is dual feasible, we get the
following properties from the constraints:

O(x)—b € K,
r € Ky,
a—®"(y) € Ki,
y € KjJ.

Combining the second and the third element via (.,.); yields
0< <CE7CL7¢)* (y)>1 = <x7a)1 > <‘T7q>* (y)>1 (44)

due to the defining relation between K; and its dual K. We can combine the
first and fourth elements via (.,.)s in a similar way:

0<(®(x) —by)2 = (®(2),y)2 = (by)2, (45)

We conclude the proof by combining inequalities (44) and (45) via the defining
property (42) of &*:

(b;y)2 < (®(2),y)2 = (7, (y))r < (z,a)r. O (46)

The theorem states that any primal objective value (z, a); is always an upper
bound for every possible dual objective value (b,y)2. In particular this is also
true for the optimal values:

B <. (47)

A particularly interesting situation occurs if this duality gap (47) vanishes, i.e.
if

B =+ (strong duality). (48)

Condition (48) is called strong duality and, if it holds, primal and dual problem

are equivalent. This situation is actually quite common and many sufficient

criteria for it to hold are known. We can extract one such criterion from the
inequality chain (46).

Corollary (Compelementary Slackness): Suppose that x € V; is a primal
feasible plan and y € W5 is a dual feasible plan. Then both z and y are
optimal and strong duality holds ({(b,y)2 = 8 = v = (x,a)1) if and only if

(x,a—®*(y))1 =0 and (P (z)—b,y)2 =0. (49)

Proof: Strong duality for optimal values x and y renders the inequality chain
(46) to an equality:

B = <b7 y>2 = <<I>x,y>2 = <1’,(I>*y>1 = <x,a)1 =7
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From this we can immediately deduce (49). In order to show the other direc-
tion, we note that condition (49) also enforces equality in (46), since it im-
plies (® (x),y)2 = (b,y)2 as well as (z,a);1 = (x,P* (y))1. We therefore get
(z,a)1 = (b,y)2. Combining this with the trivial inequalities (b,y)s < S and
(x,a)1 >~ yields

B> <b7y>2 = <z7a)1 2.

This however is just the converse of weak duality (47). Combining both implies
strong duality (8 = 7). O

In the following chapter we will introduce an important explicit realization
of these rather abstract concepts.

3.3.3 Semidefinite Programming

Semidefinite Programming (SDP) is an explicit realization of linear program-
ming for Hermitian matrices. We set V3 ~ W7 ~ Herm (C") and V5 ~ Wy ~
Herm (C™) for some n,m € N. We consider the dualities to be the usual Hilbert-
Schmidt products on Herm (C") and Herm (C™), respectively:

(91 : Herm (C") x Herm (C"*) — R,

(Xl,Yl) —> tI’(lel),
(;, )2+ Herm (C™) x Herm (C™) — R,
(XQ,YQ) = tr (XQYQ) .
We pick the following asymmetric cones:
Ky := Pos(C") C Herm (C"),

K2 = {0} .

The cone K; induces the usual ordering on Herm (C™) which we shall denote by
“=<”. In particular X > 0 is equivalent to X € Pos (C™). The second cone gives
rise to a a very restrictive order on Herm (C)™, namely X <, Y if and only if
X =Y VX,Y € Herm (C™). It thus makes sense to replace “<g,” by “=". The
dual cones amount to

Kf = K;=Pos(C") and
K; = Herm(C™).
The cone Kj = Herm (C™) induces a trivial ordering, namely X <, Y for any
pair X, Y € Herm (C™). In particular the condition ¥ >f; 0 is equivalent to
Y € Herm (C™).
With these choices, any pair of semidefinite programs is completely specified
by a triple (®, A, B):
®: Herm (C") — Herm (C™),
A € Herm(C"),
B € Herm(C™).
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Here A and B are matrices and @ is a hermicity preserving linear mapping. We
are now ready to state the linear problems for this special case:

Primal Problem
Find ~ =inf(X, A);,
subject to: @ (X) = B,
X € Pos (C™).

Dual Problem

Find S =sup(B,Y)s,
subject to:  ®* (V) < A,
Y € Herm (C™).

Note that weak duality (8 < ) surely holds for these programs. Finally we
replace A by (—A) and Y by (—Y) to bring these programs into Watrous’ [11]
standard form.

Primal Problem:

maximize (X, 4) (50)
subject to ®(X)=1B
X € Pos(C").
Dual Problem:
minimize (B,Y) (51)
subject to D" (Y) = A,

Y € Herm (C™).

Note that our change of variables (A — —A and Y — —Y) also flips around
weak duality:
v =max(X, A) < min(B,Y) = 8.

Unlike weak duality, complementary slackness directly translates into this al-
tered framework, because the two additional minus-signs exactly compensate
each other.

A highly valuable feature of semidefinite programming is that it usually
obeys strong duality. The following theorem provides a powerful sufficient cri-
terion for this situation.

Theorem (Slater’s Theorem) The following implications hold for every SDP
(P, A, B) of the above form.
1. If the primal problem is feasible and there exists a strictly feasible
Y € Herm (C™), then strong duality holds and the primal maximum is
acquired for some X € Herm (C").
2. If the dual problem is feasible and there exists a strictly feasible
X € Herm (C"), then strong duality holds and the dual maximum is
acquired for some Y € Herm (C™).

We refer to [11] for a proof of this important theorem.
In the following subsection we present and analyze some SDPs that will be
important in the remainder of our work.
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3.3.4 An SDP for the trace norm

The basic expression for the trace norm ||M]|; of an arbitrary Hermitian matrix
M € Herm (C™) can be rewritten in the following way:

[M][x = tr (|M]) = tr (P4 M) — tr (P-M),

where P, is the orthogonal projector onto the non-negative eigenspace of M
(i.e. PLMP, > 0) and P_ is the projector onto the negative eigenspace (i.e.
P_MP_ < 0). These projectors are complementary in the sense that they obey

P+ +P_. = annv
P.,P. € Pos(C").
This can be seen by considering a spectral decomposition M = Y7 | u;|i)(i| of

our matrix of interest. Then Py =3 . [i)(i[, P- =3_, _i)(i| and the right
hand side of the above equation really equals the trace norm of M:

o (PM) =t (P-M) = 3 = 3 g = 3 el = (M)

i >0 1i<0

It is obvious that this grouping of eigenvalues is optimal and that for all other
complementary projectors P and @ the expression tr (PM)—tr (QM) is smaller.
This insight tells us that ||M]|; can be found by running the following program:

maximize tr (PM) — tr (QM) (52)
subject to P+ Q =1Inxn,
P,Q € Pos (C").

This program however is an SDP. Indeed the following choice of variables and
parameters reduces the standard primal SDP form (50) to (52):

P 0 n n
X = <0 Q)EHerm((C ®C"),
M 0 " "
= < 0 _M>€Herm((C aC"),
= Ixn € Herm (C"),
D Herm (C" @ C") — Herm (C"),
( ) ) — P+ Q,
o : Herm ((C") — Herm (C" & C"),
Here the dots “.” in P Q indicate that we do not care about the off-

diagonal entries. Note that ®* really is the adjoint of ®, because for any X =
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( P Q ) and Y we have:

(@(X),Y) = (P+Q,Y)=(PY)+(Q,Y)

(") (5 2))=meon

Using this adjoint, we can directly state the corresponding dual problem:

minimize tr (Y), (53)
subject to Y>MandY = —M,
Y € Herm (C").

It is easy to see that this minimization also yields ||M]|;. Therefore strong
duality holds. This observation is consistent with Slater’s theorem which is

fulfilled, because X = Lixn O

0 0 ) is a primal feasible point and |M|+ 1T is

strictly dual feasible.
This SDP can be efficiently implemented and guarantees that the trace norm
of an arbitrary matrix can be efficiently calculated.

3.3.5 An SDP for the diamond norm squared

In this subsection we present an SDP for the diamond norm of an arbitrary
superoperator ®. It is due to J. Watrous [10, 11]. We assume that the super-
operator of interest is given by a Stinespring representation

o: LX) — L),
X trz (AgXAD),

for a pair of linear transformations Ag, A1 : L(X) = L(Y ® Z). The pair of
SDP’s amounts to the following two expressions.

Primal problem:
maximize (A1 A7, X),
subject to try (X) = try (AopAg) ,
peD(X),
X ePos(Y® Z2).

Dual problem:

minimize |45 Iy @ Y) Aoll . ,
subject to IyeY > A1 A,
Y € Pos (2).
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These two problems indeed descend from an SDP in standard form that contains
the triple (4, B,Z) and a primal variable X as well as a dual variable Y

X = (X /'))eHerm([y@Z]@X),
Y = <3 3)6Herm((€@2),

A = <A10AT 8>6Herm([y®2]@2(),
B = <(1) 8>€Herm((CEBZ),

Herm ([Y® Z]® X) —» Herm (C @ 2),

Z:().( E)H<trép) try(X)—tOry(AopAé))

* Herm (C® Z) —» Herm ([ @ Z] & X)),

v (r 0, (oY 0
Lo vy 0 My-A;(IyeY)A )

*

(1]

[1]

We point out that = and =* are indeed dual to each other. However we abdi-
cate showing this explicitly. Furthermore strong duality holds due to Slater’s
theorem, because Y with A = (|| A, Af|| [[AoAg]| + 1) and Y = (][4 A% + 1)1z
is strictly dual feasible. The primal problem is of course feasible, because we
can choose p € D (X) arbitrary and set X = AgpAg.

For this semidefinite program the optimal solution o = 3 is equal to ||®||2.
For a proof of this equality we refer to [10].

3.3.6 An SDP for the maximum output fidelity

Recall the maximum output fidelity of two completely positive superoperators
Dy, Py : L(X) = L(Z):

Finax (o, ®1) = max {F (Yo (po) , V1 (p1)) : po,p1 € D(X)}.

This is the maximum fidelity that can exist between any two outputs of the
different mappings. We assume that the two superoperators are given via Stine-
spring representations:
\I/O (X) = tI‘y (A()XAI) 3
\Ill (X) = tl“y(BoXBik),
for linear transformations A;, B; : X — Y ® Z. Note that these superoperators
admit the following dual representation:
UEU: L(2) — L(X),
U5(2) = Ap(Zely)A,
Ui (Z) = Bi(Z®ly)B;.

34



Indeed, ¥§ obeys its defining property (42):

(Vo (po),Z) = (try(AopoAl),Z) = (AopoAl, 1y ® Z)
= (po, Ay (Iy ® Z) A7) = (po, ¥5 (2)) -

Showing that the same is true for ¥ is completely analogous. The maximum
output fidelity can be calculated via the following SDP which is again due to J.
Watrous [11] (chapter 21):

Primal problem :

1 1
maximize itr Y)+ itr Y™,

. o (po) Y
subject to < v U, (p1) >0,

Po,pP1 € D(X):
Y € Herm (2).

Dual problem:

minimize 5 ||\Ijo (ZO)Hoo + 5 H\Ijl (Zl)Hoo )

. Zy —lz
subject to < . Z ) >0,

Zy, Z1 € Pos (X) .

Note that strong duality holds here due to Slater’s theorem”. The point Y = 0
is primal feasible, whereas the point characterized by Zy = Z; = 2I is strictly
dual feasible. This SDP actually descends from a standard form SDP containing
a triple (2, A, B), a primal variable Y and a dual variable Z. We summarized
this standard form SDP in table 1. Again, we will not show explicitly that this
SDP can actually be reduced to the simple form above. For a verification of the
fact that the above problem really yields the maximum output fidelity, we refer
to [11].

This fidelity notion is particularly significant, since it can serve to calculate
the diamond norm of an arbitrary superoperator - see subsection 2.1.7, formula
(16).

We furthermore point out that we can without difficulty restrict this SDP
to the case where p := pg = p; is fixed. This allows us to calculate the fidelity
of specific superoperator outputs

F (@0 (p), ®1(p)) forany pe D(X) (54)

via an SDP. We will use this in section 4.3.4.

7Actually Slater’s theorem can only be applied to the standard SDP presented below.
However the following feasible points can straightforwardly be embedded into the standard
form by adjusting the additional parameters accordingly.
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Yy = e p EHerm(ZQGBXQ),
0 .
. P1
Zy .
Z = % € Herm (22 P (CQ)
AL ’
A2
0 Iz 0
1 HZ 0 2 2
A = 3 0 EHerm(Z @X),
0 0
0 0 0
B = 00 € Herm (22 @ (CQ)
1 0 ’
0 0 1
= L(Z2e0Xx%) > L(Z2°0C?
P Y . P — g (po) 0 0
- Y* Q 0 Q— Y1 (p)
Y = —
po - tr (po) 0
.op1 0 0 tr (p1)
= L(X?eC*) =L (2°aX?),
Zy . . Zy 0 0
= A 0 Z
Z = —
,\1 . )\1HX — \I/S (Zo) 0
Ao 0 0 Xoly — U3 (Zy)

Table 1: This table contains a standard form SDP for the maximum output
fidelity. It can be shown to be equivalent to the above simpler form.
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3.3.7 Quadratically constrained quadratic programming

In this subchapter we again restrict ourselves to the usual Euclidean space
C™. According to S. Boyd and L. Vandenberghe [19] quadratically constrained
quadratic program (QCQP) corresponds to the following optimization problem:

1
minimize 5(157 Pyz) + {(qo, z) + 7o, (55)
1
§<x7Pix) +(gi,x) +r; <0 fori=1,...m,
Az =b.

subject to

Here P, € L (C"), ¢;,€ C",r; € Rand A : C™ — C™ is an affine transformation.
The vector b € C™ resides in the output space of A which can be of arbitrary
dimension m € N. In general, such a QCQP is NP-hard, because any {0,1}-
integer problem can be brought into this form. Since problems of this kind are
known to be NP-hard, the general QCQP-formulism has to be NP-hard as well.

If Py,..., P, € Pos(C"), then the corresponding QCQP is a convex opti-
mization problem and can thus be solved efficiently. It corresponds to minimiz-
ing a convex objective function over an affine transformation of an intersection
of ellipsoids, which is easily seen to be a convex set.

If a QCQP is non-convex, not all hope is lost. Convex relaxations of the
problem allow for efficiently calculating bounds on the problem’s optimal value.
Here we present an SDP relaxation from [23]. For other relaxation methods we
refer to [23, 24]. Our approach is based on the simple fact that for arbitrary
M € L(C™), we can write (x, Mx) = tr (XM) with X = za*. Therefore (55)
can be rewritten in the following way:

1
minimize itr (XPy) + (g0, ) + 70,

1
subject to §tr(XPi)+<qi7:x>+ri <0 fori=1,...m,
Az =b,
X = zz™.
This problem can directly be relaxed to a convex problem by replacing the

nonconvex constraint X = zz* with the convex constraint X > zz*. By Schur’s
complement rule [19, 25], this generalized inequality constraint is equivalent to

( ; 313 > = 0. Therefore, we obtain the following convex relaxation of (55):

1
minimize 5‘51" (XPo) + {qo0,x) + 70,

1
subject to 5tr(XH)+(qi,x>+ri <0 fori=1,...m,
Az =b,

X =z
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which is an SDP. It can be brought into our standard primal SDP form (50)
by multiplying the objective function with (—1) (i.e Py — —Fo, g0 — —qo
and ro — —7rg). The maximization of the new variables is then equivalent to
minimizing the old ones. Finally we can turn the inequality constraints into
equality constraints by introducing a slack variable® s; for each i = 1,...,m

1
maximize 5tr (X Poy) + (g0, ) + 70,

1
subject to étr (XP)+ (¢,xz) —s;+r; =0 fori=1,...m,

s; >0 fori=1,...m,
Ax = b,

X =z
-
(x* 1)0'

Such an SDP relazation yields a lower bound to the original NP-hard problem
(55), which can be computed efficiently.

4 QOwur approach
4.1 POVM-norms

In this section, we introduce the main objective of our work — POVM norms.
This norm concept was introduced by W. Matthews, S. Wehner and A. Winter
in [4].

4.1.1 Identifying measurements with channels

As a starting point, we write an arbitrary informationally complete POVM
measurement {M},},_, (see subsection 2.1.3 for the concrete definition) in the
following way

M : Herm (X) — Im(./,\/lv)QR”

X = ) [k)tr (MeX). (56)
k=1

Here Im (Mv) is the image of the mapping M. We can turn this mapping into a

measurement channel by embedding the space of outcome vectors R™ diagonally
in Herm (Y) with Y ~ C" :

M: LX) — Im(M)C Herm (Y)

X an k) (K|tr (M X) . (57)
k=1

8The inequality a < b is equivalent to demanding a — s = b for some s > 0. Such a variable
s is called slack variable.
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This mapping is completely positive. The following short calculation shows that
M also preserves traces. For any X € Herm (X) we have

tr(M (X)) = tr <i|k)<K|tr(MkX)>:itr(MkX)
k=1

k=1
=tr ([zn:Mk] X) =tr(IxX) =tr(X),
k=1

where we have used the defining property (6) of a POVM. Therefore, the super-
operator (57) is indeed a quantum channel. What is more, it is an entanglement
breaking channel.

Due to the informational completeness of {Mj};_, this channel is injective
in the sense that M (X) # 0 for any X # 0. Since M is also linear, it constitutes
an isomorphism between Herm (X) and Im (M). It is clear that this isomorphic
character holds for both measurement characterizations (56) and (57).

4.1.2 POVM norms

The channel M maps Herm (X) injectively onto a vector space Herm ()’) that
is, in particular, endowed with the trace norm ||.||;. Hence, our measurement
channel induces the following distance measure on the original space Herm (X):

IXlIlm = IM(X)]l1 VX € Herm (X) or equivalently (58)
X[ a1 IM(X) [, VX € Herm (X). (59)

It is easy to see that both definitions are equivalent. We call ||.|| ¢ the POVM

norm associated with the measurement {M;};_, that defines both M and M.
The function ||.[[o¢ : Herm (X) — R really defines a norm. Indeed we have
Va € R and VX,Y € Herm (X)

M (aX)[[1 = [laM (X) [[1 = [af[[X]r and
[IMX +Y) [l = [IMX) + M) [0 < [ X+ Y e

[l X[ a1
X+ Y|m

Finally, non-degeneracy is assured via the informational completeness of the
measurement M and non-degeneracy of the trace norm (for nonvanishing X €
Herm (X') we have M (X) # 0 and consequently |M (X) |1 # 0).

Such POVM norms have operational significance in the field of state discrim-
ination. Suppose that we have access to some measurement apparatus that is
capable of scanning every state p € D (X) in an informationally complete way.
This measurement apparatus shall correspond to a (necessarily informationally
complete) single POVM {M;,};_,. We represent this measurement as a chan-
nel M via (57). We set ourselves the task of distinguishing a density operator
p € D(X) from an alternative one ¢ € D (X). We have to take into account
that the entire information accessible to us is given by the probability vectors
p = M(p) and ¢ = M (o), respectively. It is easy to see that our optimal

39



decision rule for this task is given by the maximum likelihood rule. Using idem
rule, we get the following maximal probability of success:

+

Psuccess =

N | —
e

n
1 1 1 1
];“91' —q| = 5 + ZHP—CIHI = §+ ZHM(P—U) [l1-

This almost looks like Helstrom’s theorem [3] and gives an upper bound for
the probability of correctly distinguishing the two systems. Hence, ||.|r is
informationally significant. Rather than 6 (p,0) = i[|p — o1 in Helstrom’s
original theorem, the bias is here given by %||p — o|[s»¢. Both expressions are

related via the obvious inequality
1
§||p70'||M S(S([LO’) Vp,UED(X). (60)

This inequality would surely turn into an equality if p — o € Pos (X) (which
requires either trivial [p = o] or unphysical [p ¢ D (X)) or o ¢ D (X)] quantum
systems) and is usually strict otherwise. In all physical situations our bias is
therefore usually smaller than the one given by Helstrom. This makes sense,
because we only have access to a limited amount of measurements. In the
theorem of Helstrom, on the other hand, all possible measurements are allowed.

4.1.3 POVM-norm constants

We can view inequality (60) as a manifestation of the non-optimality of our
measurement M. In this subsection we introduce a quantitative measure of this
non-optimality in terms of norm constants. Such norm constants arise from the
basic fact that in finite dimensional vector spaces all norms are equivalent. This
implies that there exist constants \, i € R such that

MX|1 < X[ < AlXN VX € L(X). (61)

This sandwich can be tightened by restricting it to traceless-operators X €
Lir=o (X) which is the natural case in state discrimination. Since Li,—¢ (X) is
again a vector space, there exist p, A € R such that

AIXT < 1X v < pll X VX € Lip=o (X) - (62)

It is easy to see that A > X and p < ji holds. Inequality (60), for instance,
implies i = 1, whereas p is usually smaller than 1. In [4] the authors could
show the following relations
1 -
5 A< (63)
p < p=L (64)

IN

Relation (64) is obvious and we present a novel proof of (63) in subsection 4.2.5.
As already mentioned in the introduction, the norm constants A and p quantify
the capabilities of our measurement POVM {M,}}_,.
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e The constant A can be seen as a worst case promise for arbitrary state dis-
crimination: for distinguishing arbitrary states, the POVM measurement
{M}.}}_, performs at least \ times as well as the corresponding optimal
(Helstrom) measurement.

e Similarly p corresponds to an optimal case limitation: The POVM mea-
surement performs at most p times as well as an optimal measurement for
distinguishing arbitrary states.

It is clear that the constant A is practically more relevant than p. The re-
mainder of this thesis is devoted to presenting 2 algorithms for bounding these
constants. Our algorithms are computationally efficient and universally applica-
ble. One approach readily yields the exact constants A and A for certain families
of POVM-measurements.

4.1.4 Inverse measurement mappings

Our algorithms rely on the highly artificial concept of inverse measurement
mappings. As pointed out in subsection 4.1.1, any POVM measurement can be
viewed as an isomorphic mapping (56)

M : Herm(X) — Im (M) C R,
or an isomorphic channel
M : Herm (X) — Im (M) C Herm (}) .

Both maps are linear and bijective onto their image. Therefore they can be
uniquely reversed by isomorphic inverse mappings:

M™': Im (MV) — Herm (X) and (65)
Mt Im(M) — Herm (X). (66)
that obey
./,\2(.//\\/1/71 (y)) = y VYyelm (M), M! (M(X)) =X VX € Herm(X),

MM(Y) = Y VWelm(M), M '(M(X))=X VX €Herm(X).
This just means that each of the two mappings is both a left and a right inverse.
The inverse superoperator M ! preserves traces, since it is the inverse of a trace
preserving map:

tr(Y)=tr (M (M (Y)))=tr( M (Y)) VY elmM).
It is easy to see, that the other inverse mapping M has a similar property:

(Ly) =tr (M7 (). (67)
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where 1 = (1,..., 1)T € R™. However, unlike their reverse quantities which are
completely positive, the inverse mappings even fail to be positive in general.
The mapping M ™! therefore corresponds to a Hermicity and trace preserving
superoperator in the general case. The mapping M ™! has similar properties.
We verify these properties at the end of the next subsection.

4.1.5 Explicit construction of M1

In this subsection we present an explicit construction of the mapping (65). We

start by constructing an inverse channel M1 using the defining right inverse

property M (M;l (y)) =y Vy € Im (ﬂ) and an arbitrary basis {X;},", of
Herm (X). We then translate this mapping into a nice closed form.

We can characterize Im (Mv) using {X;};-, in the following way:

Im (MV) = {MV(X) X e Herm(X)} = span {M(Xl) . .,M(Xm)}
= Spa’n{a17"'7am} g y7 (68)
where a; = M(Xz) € Y for i = 1,...,m. Injectivity of M implies that

all vectors a; are linearly independent and differ from zero. Hence they span
Im (M) and form a basis of this subspace. We now define the action of M1

on elements of Im (M) via its action on the basis elements a;:
X)) A = Herm(X)

The argument [{X;},] makes the (seeming) dependence of our construction on
the chosen basis explicit. Our inverse mapping therefore acts on a general
element y = Y2 | yja; € Ain the following way:

-] () H{XG] Zyﬂa Zyg HAXG] (ay)

m

Zijj € Herm (X).
j=1

Note that this immediately implies:

ST ( } Zyg = Zij(Xj) = _vit =y

Thus our construction (69) indeed fulfills the defining property of a right inverse
mapping. However our construction appears to be basis dependent (which would
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indicate that it is not unique). This is actually not the case, as we now aim to
show. In order to do so, let us pick a different basis {Z;},~ | of Herm (X). Follow-

ing the same steps as before, this choice gives rise to a different basis {a; };n:1

of Im (Mv) This in turn results in an apparently different inverse mapping

1 {Z:},]. We pick an arbitrary element y € Im (Mv) and decompose it in
two equivalent ways

m m
Y= Zyjaj and y= Zg}jdj.
j=1 j=1

Consequently we have:
X Zyy and M [{Z:}) :Z

Conversely we have by construction:
MY uXs | = MMHXL )] =

Sz )] =

<

id_z

XN
Il

Therefore M (E;nzl ijj) =M (27:1 Uj Zj) and injectivity of M guarantees
> o1y X =201, 9;Z; := X. Both mappings map any y € Im (M) actually
onto the same X € Herm (X'). This allows us to identify both maps with each
other: -

X = MET{Z)

Since the bases {X;}, and {Z;}, could be chosen arbitrarily, this equivalence
shows independence of the choice of basis used in (69). For this reason we omit
the redundant argument [{X;},] from now on.

Our construction (69) already allows us to evaluate the action of M; L for
any vector y € Im (M) by following three steps:

1. Choose a basis {X;}.~, of Herm (X) and evaluate a; := M (X;).
2. Decompose y with respect to {a;}7_ : y =370, yja;.

3. M; ! (y) is defined by its action onto the individual a;’s (M;7! : a; — X;):

M @) =Y M (a) =Dy X
j=1 j=1
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While this construction of M; ! is essentially sufficient, it is difficult to bring the
above procedure into a closed form. This inconvenience is due to the fact that
the basis {aj};ll is in general not orthonormal. We can overcome this obstacle
by orthonormalizing {a; };n:1 using the standard Gram-Schmidt procedure. This
will result in an orthonormal basis {bj};."zl. However, since M:! has been
defined with respect to the original basis {aj};nzl, we carefully have to keep
track of all manipulations within the procedure. For this sake we introduce
m = dim (Im (M)) linear maps

gs; : Im(ﬂ) %Im(ﬂ) fori=1,...,m

that depend on 2 scalar products (ax,a;) k,I < i and i vectors ay, . .., a;. These
functions are inductively defined as follows:

ai
gs1 = gs1 (<al»a1>§a1) = m,
az — (027981>951

laz — (a2, gs1)gs1]2’

gsa 982 ({ag, ar) k1 < 2;a1,a2) :=

| ai = 0" (ai.g5)95,
gsi = gsi((ar, @) k1 <4 ar,...,0;) == i—1 ’
lla; —>25=1{ai 9s5) 9552

A — Z;n:711<a’m798]>g5]
9Sm = gSm ((ag,ar) k, 1 <m; ar,...,an) = - .
llam — 32521 (am, 955)95;ll2

Note that each such gs; is linear in its vector arguments aq, ..., a; which can be
seen by inspection. The notation “gs” underlines the trivial connection between
these maps and the Gram-Schmidt process. Setting

bi == gs; {ag,ar) k1 <145 ay,...,a;) (70)

yields an orthonormal basis {b;};", of the linear subspace Im (M) We stress
out that each gs; depends on numbers (ax, ;) and vectors ag. The occuring
numbers resemble scalar products of the form (ax, a;) and can be readily evalu-
ated for any choice of POVM mapping M and any basis {X;}2, of Herm (X).

Our aim is now to use the ONB {b;}7", in order to write down M; ! in a
closed form. For this sake we note that our inverse channel acts on the first
ONB-element by in the following way:

M (b)) = /\7;1< 4 >—M’1(al)— X = gs1 ((a1,a1); X1)

llaxl2 lasllz Nl
= 71 (X1) € Herm (X).
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And likewise for the second ONB-element we have:
./\7_1 ( ag — <&2:981>951 )

" ||02 - <&27981>951||2
M, (ag) — (az, gs1) M, " (gs1)
||a2 - <a2,981>951|\2

X5 — (az,951) 2, (X1)

||a2 - (a27981>951H2
= gs2 ({ap, ;) k,1 < 2; 71, X5)
=: Z3(Xi1,X3) € Herm (X),

M (by)

because M1 (gs1) = M:! (b)) = Z;. Inductively we can thus evaluate the
action of M ! onto the i-th ONB-element:

llai — 3751 {ai, 955)9s;l2
M (i) = Y02 (i, 95) M (gs)
N la; — Y2521 (ai, g55)gsill2
Xi =Y ai, 985) Z; (X1, ., X))
lai = 325, (ai, g5;) 9512
= g8 (ar,ar) k1 <45 Zv,...Z;—1,X;)
= Z;i(Xy,...,X;) € Herm (X). (71)

For the sake of completeness we also present the image of the last element:
~ i ( a; — Y7 (ai, 9s;) s, )
lai = 27 ai, g5;) 95,12
MY (ai) = X7 am, 95;) M (gs5)
las = 275 (am, gs;) 95512
Xon = 75 (am, 955) Zom
lai = 3275 (am g55) 95512
gsm ((ag,ar) k0 <m; Zv,..., Zm—1,Xm)
= Zn(X1,...,X,,) € Herm (X).

In our definition of the Z;’s — the images of the individual b;’s under /W;l -
we have replaced the vectorial arguments a; € Im (M) in each gs; by Hermi-
tian matrix arguments X; € Herm (X). This replacement turns our original

endomorphism gs; : Im (M) — Im (M) into a different one:

9si ({ag,ar) k1 <i; Xq,...,X;): Herm (X) — Herm (X).
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By a slight abuse of notation we use the same name for this mapping. We fur-
thermore stress out that the Z;’s are in general not positive semidefinite, which
is obvious given their construction. This manifests the non-positive character
of M.

The ONB elements b; with i = 1,...,m of Im (Mv) and their images Z; =

M;l (b;) € L (X) now finally allow us to write down the desired mapping in a
neat closed form:

M A — LX),

y sz<bj7y>- (72)

Note that this assertion indeed guarantees the defining property of a right inverse
mapping for each y € Im (M) In order to see this, let us focus on an arbitrary
ONB element b; withi=1,...,m:
MM 0] = M| 200 | = M(2)
j=1

= M (gsi ({ag, ar) k,1 <5 X1,..., X))

= gsi ({lan @) k1 < i M(X1), ..., M(X))

= gsi ((ar, @) k, 1 <45 a1,...am)

= bi?
where we have used the fact that gs; is linear in the second line and the defi-
nitions of aj and b;. Since (72) is by construction a right inverse for each such
ONB-element b; , linearity implies that it does so for arbitrary y € Im <.//\>l/)

4.1.6 Explicit construction of M™!

In the previous subsection we derived the closed form expression (72) for M1,
We can translate this into an explicit expression for M~ (see formula (66)) by
embedding the diagonal subspace of Herm ()’) in R"

E: Herm ()Y) — R,
Y o= Y e (e)(ely) la). (73)
=1

Combining (72) with (73) indeed yields the desired mapping, because E maps
Im (M~') C Herm (Y) isomorphically onto Im (Mv_1> C R™. This indeed

implies

M =MT1oE: Im (M™) = Im (/T/l/fl) M Herm (X).



Our desired inverse superoperator has the following closed form for any Y €
Herm ()

Mt Im (M™') — Herm (X),

MY = > Zi(b, Y e Yerler)
j=1 =1

= >z e)tr (Je)(elY). (74)

j=11=1

Note that this superoperator is bijective between Im (M) C Herm ()) and
Herm (X'). However, expression (74) is actually defined on the entire space
Herm (), where it acts trivially on elements that lie in the orthogonal comple-
ment of Im (M), (.e. M~ (Y) =0 VY € Im (M)"). Therefore it makes sense
to consider the following continuation of M ™1
Mc_olntinuation = M_l ° PIm(M) : Herm (y) — Herm (X> ’

where Py, () denotes the orthogonal projector onto Im (M). By a slight abuse
of notation, we will denote this continuation simply M ~!. The closed expression
(74) already corresponds to this continuation.

4.2 The polytope approach

In this section we present approaches for calculating or at least bounding the
norm constants A in (61) and X in (62). In order to do so, we first present
a formula for obtaining A which corresponds to maximizing a convex function
over a convex polytope — hence the name “polytope approach”. The main idea
behind this approach is to use the theorem from section 2.2 in order to access
this convex polytope optimization. All this is done in subsection 4.2.1. A slight
modification of our formula allows for calculating the refined constant A instead
of X. This modification is the scope of subsection 4.2.2. The computational com-
plexity of both algorithms is then analyzed in 4.2.3. We furthermore relax the
optimization and obtain computationally cheap upper and lower bounds for the
desired norm constants in 4.2.4. Finally, we apply our formalism to SIC-POVM
measurements. This allows us to analytically obtain the exact corresponding
constants A and A. This calculation is original and refines the bounds from [4].

4.2.1 The exact algorithm for \

We can rewrite the lower inequality in chain (2) in the following way:

1
X[ < S1X 5 X € Horm ().
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From this we infer that < is the solution of an optimization problem

1
A

sup {|| X1 : | X]lm =1, X € Herm (X)}

> =
Il

max {|| X1 : [|X|lm <1, X € Herm (X)}. (75)

This expression corresponds to maximizing a convex function (X +— || X||1) over
a convex set (the norm ball B (||.||p)). Therefore sup = max and the maximum
is acquired on the boundary of the convex set. However this boundary is just
characterized by || X ||pm = 1, which is why the second equality sign in (75) holds.
We point out that, due to the definition of ||.||», this actually means

% = max {[|X]ly + [M(X)[ls < 1, X € Herm (1)}

We now use the surjectivity of the inverse mapping M1 Im (Mv) — Herm (&)
(65) (which satisfies M (M‘l (y)) =y Vy € R™) in order to alter our maxi-
mization problem to

1
A

max{||X||1 CIMX) L <1, X e Herm(X)}
- max{nﬂ—l W : W(M—l (y)) <1, yelm (M) C R”}
max {|M @)+ gl <1,y € Im (M) CR)

- max{n/\?*l W) 1 yeB(.])NIm (ﬂ) c R”} . (76)

Recall that Im (ﬂ) is a linear subspace of R™ and thus an unbounded convex
polyhedron. Therefore its intersection with the bounded polyhedron B (]|.|]1) is
again a convex polyhedron. We denote the resulting object B (||.||1) N Im (H)

Due to the Weyl-Minkowski theorem (see subsection 3.1.6), our set of interest
B is also a convex polytope. This is characterized by [ vertices vy, ..., v;:

B(||.H1)OIIn(MV):conv(vl,.‘.,vl). (77)

We will discuss the computational complexity of this polyhedron-polytope char-
acterization in the next but one subsection. Here we only mention that the
overall number of vertices [ naturally depends the measurement {M;}]_,, so
indeed | = I ({M};_,)- This allows us to rewrite the above characterization of
L in the following way:

>

1 —
5 rnax{”./\/l_1 (Wlh:ye conv(vl,...,vl)}.

This expression still corresponds to maximizing a convex function over a convex
set which is in general NP hard. However, due to the polytopic description of
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our feasible set, the theorem of section 2.2 is applicable and tells us that we in
fact have

= max M () . (78)

> =

Note that the function y — M~ (y) |1 can be evaluated efficiently for any
y € R™. Therefore, calculating A via (78) is feasible, provided that the number
of vertices [ does not explode and the vertices wvq,...,v; themselves can be
obtained efficiently.

4.2.2 The exact algorithm for A\

The measurement mapping M is the commutative version of an entanglement
breaking channel M. In particular, such a channel preserves traces. We already
showed in (67) that the commutative mapping M obeys the corresponding prop-
erty N

(IL,LM(X)) =tr(X) VX eHerm(X),

where 1 = (1,..., 1)T € R™. Hence, M maps traceless operators X € Li,—o (&)
onto vectors y € R™ that obey (1,y) = 0. We denote this space

Liy—o = {yeR": (1,y) =0} CR"™

Adding the condition y € L 1y—¢ to (76) is equivalent to demanding traceless
operators in the original maximization. This yields a formula for the refined
norm constant A, namely

%zmax{”./(/lv_l @)l ye BN L y-ontm (M) CR. (79)

The intersection B (||.][1) N L 1y—o is a polytope whose vertex representation
can be obtained analytically. In order to do so, we will use our insights from
subsection 3.1.6 about the vertices and edges of the cross polytope. A (minimal)
half space representation of the intersection polytope is given by

B([l.h) N L 1y=o ={z € R": (1,2) =0, {(c,z) <1, c = (£1,...,£1)} (80)

and contains 2" + 2 linear inequalities?. Note that not a single vertex e; of the
original cross polytope lies in this intersection. This allows us to discard them in
this discussion. However, any point 2 € B (||.|[1) N L 1y—o exactly satisfies the
inequality (1,z) > 0 (or equivalently (1, z) < 0). From this we can conclude that
any vertex of the intersection has to lie on an edge of the cross polytope. This
is because any vertex has to exactly satisfy n linear independent inequalities
from the polytope’s half space characterization (see subsection 3.1.6 and [18],
Chapter III, Theorem 4.2). A point in the intersection can only achieve this if it
exactly satisfies at least (n — 1) linearly independent inequalities of the original
cross polytope characterization. Since vertices do not count, this is only possible
for points lying on some edge'® of B (]|.]1). We have shown in equation (37)

9This is because the equality (1, ) = 0 is equivalent to the two linearly dependent inequal-
ities (1,z) <0 and (1,z) > 0.

10Recall that we have defined an edge to be a set that exactly satisfies (n — 1) linearly
independent defining inequalities of the polytope.
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(subsection 3.1.6) that all edges of the cross polytope are of the form
I(r)=71(xe))+ (1 —7)(xe;) fori##j, 7€][0,1].

The intersections of these lines with the subspace L 1y—¢ are easily seen to
establish the following set
1
{12 (e; — ej)}
i#]

that contains 2n (n — 1) vectors. Each of them is obviously a vertex of B (||.||1)N
L1, y=0. Our discussion above furthermore assures that this set of vertices is
indeed complete. Hence, we can characterize our polytope of interest using the
vertex representation:

B (Il1) 0 Lt y=0 = conv ({i; (ei e»}#j) .

This vertex characterization allows us to immediately obtain an exact formula

)mlm(ﬂ) QR"}.

This formula again depends crucially on the intersection of a polytope (conv ({i% (e: —ej)}, 75].) )

% = max{”ﬂl (y)|l1: y € conv ({:I:; (e; — ej)}

i#]

with a subspace (Im (Mv)) Such an intersection is again a polytope and can

be characterized by I vertices
1 —_— ! ’
conv :|:§ (e; —€5) NIm (./\/l) = conv (vl, ey vl) . (81)
i#]

Using the theorem from subsection 2.2 once more results in

]_ _ ’
T+ = max M (o)) I, (82)
A =10

?

which is the traceless equivalent of (78).

4.2.3 Computational complexity

The sole computationally critical step in the above algorithms is obtaining the
convex polytope description (77) of B (||.]]1) N Im (M), or the description (81)

of B([[.l1)NL . 1y—oNIm (./\7), respectively. This task corresponds to efficiently

computing the intersection of two polytopes. It is a special case of the famous
“vertex enumeration problem” [26]. K. Fukuda discusses this special case in [27].
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He points out that calculating intersections can be done efficiently, provided that
both polytopes are given in halfspace representation. In this case one can simply
take the union of both defining inequality sets and do redundancy removal.

If one polytope (or both) is (are) given in vertex representation, the situation
is much more challenging. A polynomial algorithm is known for a special case
of polytope intersections [28]. In order to be efficient, this algorithm requires
that the polytopes are in “general position”. However, it can also be applied to
general polytopes. We refer to [28] for a proper definition of the general position
property. H. Raj Tiwary could show in [29] that the general intersection problem
is NP-hard if at least one polytope is given in vertex representation.

Unfortunately, our problem exactly corresponds to this case, because the 1-
norm ball B (||.||1) can only be efficiently represented in vertex representation.
Furthermore our setting does not admit the general position property. The
critical step of obtaining the vertex representations of our intersections is thus
hard for general subspaces.

4.2.4 Cheap upper and lower bounds for X and )

In this subsection we present a way of bounding the constants X and A. The
bounds presented are computationally cheap in the sense that they can be ef-
ficiently computed. Let us start with bounding the constant A. In the pre-
ceding subsection we pointed out that classifying the intersection polytope

B(||.]1)NIm (Mv) is the only hard step in our approach. This (possibly) tedious
evaluation can be omitted, if we consider simple convex sub- and supersets of
B (]|.l1) N Im (M) instead of evaluating the set itself. In order to obtain such

sets, we introduce the orthogonal projector P := P;,m(M) : L(Y) — Im (M)
that projects onto the subspace Im (/K/lv) We point out that the following in-
clusion series holds:

Pey Pen ) —
conv | +—— . F—0 B (||.l1)NIm (M) C conv (+Pey,...,£Pe,)
(P pecy) € 20 () € com (<7 -
83

which is easy to see. Let us start with showing the first inclusion by considering
an arbitrary convex combinationy = > 1" | > ozii”;—;%e“i, where 31" | S, af =
il

1 and a;,a; > 0 for each i = 1,...n. Obviously y = P> | S, af £«

@ i [Perll;

which immediately implies y € Im (M) Furthermore note that

= " IPeilly |

Iyl =

Pl _ g e
<y Tt Y Tt =

i=1 =+ i=1 =+

This implies y € B (]|.|l1) as well and we have shown the first inclusion. For the

second inclusion, we simply note that we have z = Pz for each z € Im (M)
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Combining this with B (||.]|1) = conv {%ey,...,+e,} immediately implies that
for each z € B(||.]1) N Im (MV), we have

z € Pconv (*eq,...,+e,) = conv (£Pey,...,+Pe,).

This proves the second inclusion.

Note that the above set inclusions are usually strict. This follows from the
fact that orthogonal projectors in general do not contract the /;-norm®!.

The first inclusion in (83) allows us to relax our exact maximization formula

(76):
1
A

max {[ M~ ) |1 = v € B(-)) nim (M) SR}

- 7)(91 Pen
> max< My :yEconv(i N )gR"}
(i Pl TPeal
.//{/771 (Pez) 1

max
1<i<n

)

— Pe.
(i)
[Peslly

where we have once more used our theorem from section 2.2. Similarly, we can
use the second inclusion in (83) to obtain a converse bound:

= max ———————
p tsisn [Pely

= max{|M @)l yeB(Lh)nim (M) CR"}

> =
IN

rnax{”/i/lv_1 (y)|l1: y € conv (£Peq,...,+Pe,) C R"}

_ Aq-1 )
= max [ M (Per) .

These two estimates allow us to bound the inverse of the sought for constant A:

H.//\\/l/_l (,P(il) ‘ 1
max L[ < =
1<i<n |Pell; T\ T 1<i<n

M1 (Pei)Hl . (84)

We can obtain a similar cheap sandwich for the restricted norm constant A by
following a completely analogue procedure:

. [ M Pei = Pej). )

S TPe—Pel;

< max% H./W_l (Pe; — Pej)H

1
— 85
A i#£j (85)

1 .

It is obvious that the bounds in these two sandwich inequalities are computa-
tionally cheap to obtain. However, (84) and (85) are in general not likely to be

HTake e; € R? and P = |[v)(v| with v = \/% (1,€) and € > 0 as an example. In this case
€

we have ||Pei|1 = [[(v,e1)v]1 = |[v|1 = \/1% This expression is greater than 1, provided

that e is sufficiently small.
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Figure 3: Pictorial illustration of Dvoretzky’s theorem. It indicates that the
intersections of the cross polytope and a subspace of certain size almost resemble
an ellipsoid (circle) in sufficiently large dimensions. The graphic is taken from
a blog entry [31] by J. Lee in tcs math.

very tight. We illustrate this for (84) by considering Dvoretzky’s theorem. To
be more precise, we use the setting that V. Milman used to prove idem theorem
in [30]: If B C R™ is an arbitrary convex body and H is a random c (€) log n-
dimensional hyperplane through the origin, then with high probability, B N H
e-close to an ellipsoid. This astonishing fact is illustrated in figure 3. Applied to

our situation, this theorem implies that our set of interest B (]|.||1) N Im (M)

is very likely to be almost an ellipsoid, provided that our measurement POVM
{M;};;_, is sufficiently redundant (in the sense that dim Herm (X) = log (n)).
In our inclusion (83), we then aim to approximate this almost ellipsoidal ob-
ject by “honest” polytopes (that only possess up to n vertices). It is obvious
that such an approximation cannot be very accurate. Naturally, this inaccuracy
propagates into (84). Basically the same argument also holds for (85).

Note that our Dvoretzky-argument also underlines the (general) computa-

tional hardness of calculating the vertices of B (||.||1) N Im (ﬂ) Indeed if the

polytope B (]|.][1) N Im (/T/l/) almost looks like an ellipsoid, it has to have many

vertices. Calculating these objects is thus likely to be hard, simply because so
many of them need to be computed.

We conclude this subsection by giving a worst case promise for the upper
bounds in (84) and (85). It is based on the simple observation that any orthog-
onal projector P obeys

1Polli < vnl|Polla < Vnlvlla Vv eR™
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Hence, we conclude Pe; € v/nB (]|.]]1) N Im (/W) and consequently

./I\/IV71 (Pez)

max
1<i<n

max{nﬁxz‘l W) |1 : y € conv (£Pey, ..., ﬂ:Pen)}

1

IN

e {41 ) 1+ o & VB (L) 1 ()}

_ ﬁmax{uﬂ-l(y)\h: yeB(H-lll)mm(ﬂ)}
1
- Vs

An analogous reasoning can also be applied to (85). We conclude that the
above sandwich inequalities yield lower bounds on A and A that have a worst
case accuracy of %

4.2.5 The relation between \ and \
In this section we derive relation (3) which shows that the constants A and A

are equivalent up to a factor of 2:

1- -
“A< A<

2

The second inequality follows directly from comparing the corresponding max-
imization procedures (76) and (79):

% = max {|M ) lh: v € BN LyoonTm (M) CR)
< max{IM~ @)l yeB(lI)nIn (M) R
1
- 1

In order to show the lower bound, we introduce the projector P 1y—o : R" —
L 1y—0- This operator is explicitly given by

1
—o = Irn — —|1){1
P y=o0 =Ir n| )(1],

where again 1 = (1,..., l)T. Using this expression, we can readily evaluate the
projector’s influence onto the /1-norm of a given vector. It suffices to consider
its action on the standard basis vectors

15

IPeymoledll, = |lled = - enm| =l - )

A

1
—=(,...,1,1=n,1,..., D"

n I
n—1

= 2

<2 Vi=1,...n.
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We know from subsection 4.2.4 (inclusion relation 83) that we can find an upper

bound for A by approximating B (||.][1)NL . 1o via its superset conv (:|:77<.,1>:061, el :l:77<_71>=oen).
However, together with our previous calculation, this yields the following simple

superset:

B ([ll) N L 1y=0 € conv (£P( 1y=0€1, - - -, P 1y=0¢n) € 2B (||.[l1) -

9

We can use this inclusion to obtain

= max {|M @)+ ye (BUI) N Le=0) nim (M)}
< max{Hﬂfl (y)H: y € 2B(||.1) NIm (M)}

= 2max{H./f\/lV71 (Q)H y € B(||.[[) N Im ('/W)}

— 2L
A

1
Y

This is just our desired formula (3). W. Matthews and his collaborators already
derived this relation in [4] via a direct estimation. Their calculation relies on
a clever, but not very intuitive, rewriting of the considered state. Our proof
follows a simple geometric procedure and is therefore more intuitive than the
original one.

4.2.6 Exact constants )\ and \ for SIC-POVMs

In this subsection we analytically calculate A and A for a special family of
POVM’s, namely SIC-POVMs [32]. We obtain explicit expressions for the norm
constants by using formulas (78) and (82) .

A SIC-POVM is an informationally complete POVM that is endowed with
a special symmetry property. Furthermore such a POVM is exactly informa-
tionally complete in the sense that it consists of exactly d? different elements.
Throughout this subsection we consider a Hilbert space C¢. This implies that
the state space Herm (C%) has real dimension d?. The elements {Fl}i1 of
a SIC POVM correspond to subnormalized projectors F; = i) (1] (where
(i, =1Vi=1,...,d%). The symmetry property corresponds to demanding
a constant equal inner product between the elements:

62

Here ¢ € R, denotes the required constant overlap. The constant c? is uniquely
defined by another defining property (Zle F; =Ica) of the SIC-POVM. It can
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be easily shown that ¢ = W11 must hold. Hence we get the formulas

1 L
tr(FiFy) = EA+D) i # 7,
1
tr(Fze) = ?,
d2
S F = I,
=1
F, > 0.

Note that the exact informational completeness implies that our measurement
mapping
M : Herm ((Cd) — RdQ,
d2
X ) |kt (FX)
k=1

is already surjective (Im (Mv) ~ X). This in turn implies By (||.|[1)NIm (Mv) =
By (J|l1) and we can avoid the computationally hard step of calculating the
intersection. Consequently we get

1
A

max { M () 1 < y € B(l) SR}
_ A1,
= max M7 ()]

which can be evaluated analytically. We do this by picking the SIC POVM
{F1,...,Fp} itself as a basis of Herm (X). We can calculate the image M (F;)
of each basis element Fj;:

d2
a; = M(F) =Y |k)tr (FF) = lijtr (FF) + > [k)tr (FpF,)
k=1 ki
)+ k) = s (@) i)+ 3
= — 17 = 2
d? A2 (d+1) d2(d+1) .
k#i k#i
1 &
= oo | dli i=1...,d%
FATT d\z)+;|k) Vi .d
It is easy to see that the vectors aq,...,aq2 form a basis of R? and the action

1

of the inverse mapping M- corresponds to

M1 RY & Herm (Cc%),
a — F; VZ:L,dQ
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In order to obtain )\, we have to check the value of M at each vertex point +e;
with i = 1...,d?. Observing

d? d? d? d? d?
Yo = X a9+ X W) = marT dZu )
j=1 j=1 k=1 k=1 j=1
1 & 1 &
= m (d+d°) ZU dzm
j=1 Jj=1

allows us to find the representation of each standard basis vector in the basis
(Oq, ce ,adz):

=d(d+1) Z . (86)
From this we can immediately infer that
— d2
M (e)) = dd+1)F;=> Fj=(d+1) )] —lea Vi=1,....d°
j=1

Since this matrix is already diagonal, we can use the pinching inequality to
obtain its trace norm:

e,

1(d 4 1) [ti) (il = Teally

= d|l[v)@illly + Tca — |9i) (il ll
d+(d—1)=2d—1.

This expression is equal for all standard basis vectors and thus also corresponds
to the maximum. Hence, we can infer that

1

AT

(87)

For obtaining the refined constant A, we have to check the vertices +1 (e; — e;)
with i # j, 4,7 =1,...,d* of the polytope B (||.|[1)N L 1y—o, instead of checking
the vertices te; of B (||.|]1). From (86) we can directly infer

1

1
i(eifej)zid(d+l)(a¢fozj) Vi,j:].,...,dQ.

Similar to above, we conclude

(s

1
= §d(d+ 1) ||F; — Fjll,

1

% (d -+ 1) lla) (il — 1) Wl

1 2d

e
d+1
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This value is again a constant that does not depend on i,j. Therefore the
maximization is once more trivial and we obtain

A=—. 88
- (55)
In [4], the authors also consider SIC POVM’s as a special case of 2-designs.

Their bound amounts to 1

— <)\ <
S

1

7

Our result for \ yields the weaker lower bound 4(1%2 for this sandwich via the
basic relation X < X. However, formula (88) is much stronger. It states that the
upper bound % is actually always acquired which makes the whole inequality
redundant. W. Matthews and his collaborators considered the specific state
difference p — o = |¢1)(¥;| — |¥2)(w2|. For this special case they could show
[M(p—0o)|l1 = %|lp — o1, which implies A < 3. Such a bare case study can
however only yield a bound on the desired constant A. Our formalism gives
additional structure to their choice of state. It implies that the p — o above is

indeed extremal (a worst case scenario), because it is the image of the vertex

% (e1 — e2) under M-~1. This insight allows us to render the inequality A < é

into an equality A =
Finally, we point out the obvious fact that our results are compatible in the
sense that they fulfill A < X and %)\ <A

=

4.2.7 Discussion

Our polytope algorithm for obtaining A (see subsection 4.2.1) crucially depends
on the geometric structure of B (]|.|[1) N Im (M) Its computational complex-

ity scales with the number of vertices I of the intersection polytope'?. This is
because algorithms for obtaining these vertices [26, 28] have polynomial output
sensitivity. Furthermore our maximization procedure requires checking a func-
tion’s value at each vertex.

The worst case scaling of [ with respect to the dimensions n and m is not yet
fully understood. Dvoretzky’s theorem (see subsection 4.2.4) indicates that the
number [ is very likely to be huge if n > m. This, as well as certain case studies,
suggest a scaling which is exponentially dominated by the codimension (n — m)

of the subspace Im (ﬂ) C R™. To rigorously prove this conjecture for general

subspaces, however, seems to be difficult. One strategy is to find an explicit
worst case m-dimensional subspace for each 1 < m < n. Characterizing the
corresponding intersection polytope would then yield a tight upper bound onto
the scaling of [. Such worst case realizations are interesting on their own and
finding them would constitute an interesting follow up task.

I2Recall that n = dim (B (]|.||1)) denotes the number of POVM measurements, whereas

m = dim (Im <ﬁ4v ) = dim L (X) denotes the dimension of the operator space considered.
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The difficulty of characterizing intersection polytopes vanishes in the special
case of exactly informationally complete POVMS. Such measurements obey n =

m and we have Im (./\7) ~ R™ which consequently implies B (||.||1) NIm (./T/l/) =

B (]|.|l1). Hence, we can completely avoid the (potentially tedious) step of calcu-
lating intersection vertices and directly maximize our objective function over all
cross polytope vertices ey, ..., +e,. Naturally, this can be readily done. One
important special case of such exactly informationally complete measurements
are SIC POVMs. Due to their additional symmetry we could analytically cal-
culate A = 5 and A = Tal, where d is the dimension of the underlying Hilbert
space. This original result tightens the previously known bound %ﬁ <A< %
from [4] and adds deeper understanding to their reasoning (see subsection 4.2.6).

The other side of the coin is of course, that the polytope approach is likely
to perform bad, if n > m. This is the case, if the measurement POVM is
characterized by a lot of redundancy. However, in this situation not all hope is
lost yet. If the POVM has high degree of symmetry, the intersection polytope
is likely to be much simpler than our worst case discussion from above suggests.
Preprocessing in the form of a clever redundancy removal could make obtaining
reasonable bounds on A and A feasible. Exploiting these ideas would constitute

an interesting follow-up project.

4.3 The diamond approach

This approach uses the channel description M : Herm (X) — Herm (Y) of
our measurement. We show in subsection 4.3.1 that the refined norm constants
1 and A are in one-to-one correspondence with induced 1-norms of artificial
superoperators solely depending on {Mk}Z:y In subsection 4.3.2 we show that
the induced 1-norm can be written as a (non-convex) QCQP. We apply an SDP
relaxation to this program in subsection 4.3.3 in order to obtain bounds on A
and p which can be efficiently calculated. Converse bounds can be found on
a fidelity based level by applying the Fuchs-van de Graaf inequalities. This is
shown in subsection 4.3.4. Finally, we give some comments about the tightness
of our estimates in a discussion that concludes this section.

4.3.1 The exact algorithm

On the contrary to the previous approach, we focus here on the channel descrip-
tion of our measurement POVM {M;}}_,

M : Herm (X) — Herm ()

X e Y|k (k|tr (MeX)
k=1

and its inverse counterpart

M~ Herm () — Herm (X)
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whose explicit description is given by (74). Our aim is to get a formula for the
norm constants in (62)

AlX T < 1X e < pll X
In order to do so, we write
pw = sup{||X|lm: [|[X]1=1, tr(X) =0, X € Herm (X)}
= max{||X||m: [|[X|1 <1, tr(X) =0, X € Herm (X)}
= max{|[MX)|1: | X|1 <1, tr(X) =0, X € Herm (X)}
and similarly

1
— = sup{||X|1: | X|lm=1, tr(X) =0, X € Herm (X)}

A
max {||X|1: | X||m <1, tr(X)=0, X € Herm (X)}
= max{[|X|1: IM(X)]1 <1, tr(X)=0, X € Herm (X)}.

The second equalities in both expressions hold because each case corresponds to
maximizing a convex function over a convex set. In each equality chain the third
equality follows from definition (58) (||X||m = M (X) |1 VX € Herm (X)).
Now recall that M1 : Im (M) — Herm (X) is surjective and trace preserving.
Therefore we can write

1

A

max {|| X1 : IM(X)|: <1, tr(X)=0, X € Herm (X)}

= max {|M™! Y) [1: MM PX) <1, tr(MH(Y)) =0, Y € Im(M)}
= max{[MP(Y)|: YL <1, tr(Y)=0,Y €Im(M)}.

This already looks very similar to the u-formula. Now we introduce orthogonal
projectors

PY=Y: Herm (X) — Ly—o (X) C Herm (Y),
Py=0: Herm (Y) — Lyu—o(Y) C Herm (V)  as well as

Py Herm (V) - Im (M) C Herm ().

The first two operators resemble projectors onto the tracefree subspaces of X’ and
Y, respectively (i.e. tr (P§=° (X)) = 0 VX € Herm (X) and tr (P£=%(Y)) =0
VY € Herm ())), whereas the last one corresponds to the orthogonal projector
onto the image of M which is a linear subspace of Herm (). Using them we
can write

pw = max{|IM(X)1: [|X]:1 <1, tr(X)=0, X € Herm (X)}
= max {||M (P$=° (X)), : IX]1 <1, X € Herm (X)}

and likewise
1

T = max {[|MP(Y) |1 : [Y]1 <1, tr(Y)=0, Y €Im(M)}

— maX{HM_ (P;} 0 )Hl IY|i <1, Y €Im( /\/l)}
ma {71 (Pﬁfr_o( Py )| Y I <1 Y € Hem ()}
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We simplify these results by defining the following hermicity preserving, trace
annihilating superoperators:

o, = M oPY=0: Herm (X) — Herm () (89)
®y = M 'oPy=00 P;m(M) : Herm (Y) — Herm (X). (90)

Note that ®, and @, solely depend on the underlying POVM {M; }}_, and can
be explicitly constructed (see subsection 4.1.6). With this notation we indeed
get

max {[|®,, (X) [l = [X]lL <1, X € Herm (X)} = [[®,[)1,

max {[|®x (V) [[1 : [Vl <1, Y € Herm (D)} = [|®xlf1-

>l =

Therefore the sought for quantities really correspond to induced 1-norms of the
superoperators ®, and .
4.3.2 A QCQP for calculating the induced 1 norm

In this subsection we present a QCQP for calculating the induced 1-norm of an
arbitrary superoperator ® € T'(X,Y). Our quadratic program is inspired by J.
Watrous’ SDP for the diamond norm [10, 11]. We assume that this superoper-
ator is given by a Stinespring pair Ay, A1 € L (X,Y ® Z) such that

D (X)=trz (Ao X AT). (91)
Recall that, due to convexity, we can write the induced 1-norm as
@[]y = max {[| (|z){yl) [l = =,y € §(X)}

(see subsection 2.1.7 | formula (13)). The following algorithm yields the negative
square (—||®||?) of the sought for induced 1-norm:

minimize: (x,— A1 Alx) (92)
subject to: try (|z){(z]) = try (Ao|u)(ulAg) ,
ueS(X),
rTEYRZ.

The objective function is indeed a quadratic function in z. However it is mani-
festly non-convex, because (—A; A7) is negative semidefinite. This is the reason
why this program cannot be implemented efficiently. We propose a convex re-
laxation of this problem in the next subsection. The constraints are quadratic
equalities, which can be turned into the canonical form of a QCQP.

We now prove that this algorithm indeed yields (—||®||?) for any superop-
erator ® given by (91). Let us define our set of interest in the following way:

A={|z){z]: € Y® Z, try (|z)(z|) = try (Ao|u)(u|Aj) for some u € S(()gé})
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The optimization result (—a) := minge 4(A41 A7, |z){z|) of the above optimiza-
tion is equivalent to the following expression:

o = max( A, A7, |o) e

Note that by definition we have

9 B 2 * 2
[®f = u;gg%Y)HQ(HU>@4)H —-ujggﬁx)ﬂthz(th0<vL41)”1
= max [tr (Utrz [AO‘U><U|AT])|2
u,v € S (X)
UecU(Y)
- max o ([U @ Iz] Aolu) (v]A})
u,v € S (X)
UeU(Y)
_ max  |(v]A% (U @ Lz) Aolu)|?
u,v € S (X)
UeU()
= max |4 (U®Iz)Agul?
u€ S (X)
UecU(Y)
= max tr [AT (U®1z) Aglu) (ul A5 (U @ 1z)" Al}
ueS(X)
UecU(Y)
= max tr [AlAT (U®lz) Aglu)(u|Ag (U®HZ)*]
u e S(X)
UecU(Y)
= max_ (A4}, (U ®1Iz) Aolu)(u|A; (U ®1z)").
u € S(X)
UeU(®)

Apart from standard tricks, we here have used formula (5) (|| X||; = maxyep(x) [(U, X))
for the trace distance, the self polarity (24) of the 2-norm (||z[|2 = maxy,<1(z,¥))
and the basic fact that ||Sz||2 = tr (S|z)(x|S*) = tr (§*S|x){x|) holds.

It therefore makes sense to define the set

B:={(U®Iz) Aglu)(ul A5 (U®1z)" : ue S(X), UecUD)}.

We now have to show that A = B. This can be done by showing two converse
inclusions.

1. BC A: Let us pick u € S(X) and U € U ()) arbitrarily and set:
z=U®Iz)Apu.
Then zz* is pure by construction and we furthermore have

try (lz)(z]) = try [(U @ Lz) Aolu)(u| A5 (U ® Lz)"] = try (Ao|u)(ul A7),
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which according to (93) implies X € A.

2. A C B: Conversely, let us consider an arbitrary element z € A and a
corresponding u € S (X) such that

try (|z)(z]) = try (Aofu)(ulAg) -

Now both x and Agu are purifications of the same state (try (|x)(z])).
Hence they are unitarily equivalent in the sense that there exists a U €
U (Y) such that:

But this just means that:
|z)(@] = (U @ 1z) Aolu) (ul Ag (U @ 1z)"
and therefore z € B.

This finishes the proof of the validity of our QCQP (92). O

4.3.3 The diamond norm as proxy for our induced 1-norm QCQP

Note that our QCQP (92) does not change if we replace the demand u € S (X)
by the equivalent conditions tr (Ju)(u|) = 1 and u € X. Therefore the problem
is equivalent (modulo flipping a sign) to

maximize: (x, A1 Alx)

subject to: try (Jz)(z]) = try (Ao|u)(ulAf) ,
tr (Ju ) = 1,
u e X,
reyeZ.

In subsection 3.3.7 we have shown how such a QCQP can be relaxed to an SDP.
This is done by replacing |z)(z| and|u)(u| by X and p, as well as imposing the
SDP constraint X = |z){x|, (p = |u){u|). This leads to the following relaxation
maximize (A1 A7, X)
subject to try (X) = try (AopAyg) ,
tr (p) =
X = |z)
p = Ju)(u
ue X,
rTEeEYRZ.

1
(xl,
B

Note that the original variables x and v do not appear in the actual process.
The boundary condition X > |z){x| for at least one x € J ® Z can therefore
safely be replaced by the condition X > 0. Similarly, we can simply write p = 0
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and drop u. However, positive semidefiniteness of p together with the condition
tr (p) = 1 implies that p has to be a density operator. Therefore our convex
relaxation assumes the following simple form:
maximize (A147,X) (94)
subject to try (X) = try (AopAyg) ,
X ePos(Y® 2),
p€D(X)
Running this program gives us an upper bound for the optimal value of our
QCQP (92). Since the output of idem program corresponds to ||®[|?, the SDP
(94) gives an upper bound to that value. A closer look on this SDP, however,
reveals that it is exactly the SDP for the diamond norm squared (||®[/2) of ®
which has been presented in subsection 3.3.5. Note that this is consistent with
what we just said, because || @3 < ||®]|2 V® € T (X,)).
The diamond norm proxy (94) allows us to write down bounds on A and
that can be efficiently calculated:

po=1Pull < l[@pullo,
A @Al > @Al

4.3.4 Fidelity based converse bounds

Bounds in the other direction can be obtained via a result from M. Piani and
J. Watrous in [9]. They show in Lemma 2 of idem paper that every hermic-
ity preserving trace annihilating superoperator is proportional to the difference
of 2 quantum channels. These channels can furthermore be explicitly con-
structed!®. Since ®; and ®, are such superoperators, we can find quantum
channels U}, W2 € T'(X,)) and ¥}, ¥3 € T (¥, X), as well as constants ¢, and
¢y such that

¢y = Cu(q’ﬁ_qli)v
Py = o (V) -03).

This allows us to obtain fidelity based bounds by applying the Fuchs-van de
Graaf inequalities (9). In order to see this, note that for any X obeying || X||; <1
we have

1@l > @0 (X) [l = cull P, (X) =07 (X) 11
2¢,0 (\IJ}L (X), \Ili (X)) >2c, (1-F (\I’}L (X),\Ili (X))).
Similarly, we can get an analogous result for bounding A. This reasoning yields

the following estimates>

po> 2¢, (1-F (¥, (X),¥;(X))) forany X € Herm (X) with || X|[|; <1, ,
1
26)\

I

A <

(1—F (T} (Y), 83 (V)" forany Y € Herm () with [|[Y; < 1.

13In fact it is the Choi representation of these channels that can be explicitly constructed
from a Choi representation of the original superoperator.
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Note that for any fixed X € Herm (X)) (Y € Herm ()), the fidelity F (¥}, (X),¥2 (X))
(F (¥} (Y),¥3(Y))) can be efficiently calculated by using, for instance, the
SDP'4 presented in subsection 3.3.6. In principle these bounds can be tight-

ened by minimizing the fidelity over all possible states

iz 2 (1 i, P00, 9 () ) )
1 . 1 2 -
b2 g (1 i FOLM) B ) )

However the fidelity is a jointly concave function and therefore minimizing it
over the convex set B (]|.]|1) is computationally hard in general.

4.3.5 Discussion

With this approach we have obtained upper and lower bounds for A and p. The
diamond norm bounds

peo < 1@l (97)
P oY (98)

are of particular importance, due to the operational significance of A\ and pu.
Inequality (98) gives a nontrivial lower bound on the worst case promise A.
This bound itself serves as a (weaker) worst case promise. Similarly, inequality
(97) gives an upper bound on the optimal performance which can be useful as
well. While the upper bound on p is often likely to be trivial (@ < 1), this is
never the case for the lower bound on A (A > 0). This is simply because the
diamond norm is always finite for sensible superoperators.

Bounds into the other direction are given by (95) and (96). However, they lack
the operational significance of their converse counterparts (97) and (98).

The tightness of estimates (97) and (98) is intimately related to the tight-
ness of the inequality ||®]|; < ||®||, for hermicity preserving trace annihilat-
ing superoperators ® € T (X,)). As already mentioned before, such super-
operators correspond to differences of quantum channels ¥y, ¥y € T (X,))
(® = ¢(U; — Uy)) [9]. Therefore we are actually interested in the tightness of
the inequality

¥ — Wally < ||¥; — Walls for quantum channels ¥y, Us. (99)

But this is just the question, whether or not entanglement is useful for the
discrimination of quantum channels. If the inequality above is strict, then en-
tanglement really does amplify channel discrimination, while otherwise it does
not. While it is easy to construct specific channels ¥, U5 for which relation
(99) is given by an equality, the main result of M. Piani and J. Watrous in [9]

14This SDP actually calculates the maximum output fidelity. If we however introduce the
SDP constraint pg = p1 = X, the program calculates the required quantity F' (®o (X), ®1 (X))
instead of Fiax (®o, ®1).
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points into the opposite direction. They could show (Corollary 1) that for any
entangled state p € D (X ® Z) there exist channels 21,25 € T (X,Y) such that

[(E1 @1z () = (B2 @1iz)) (P)]l; > B2 — Ezlls.

Hence, ||=1 — Z2ll6 > ||Z1 — E2]|1 for the occuring channels. This indicates that
for random entanglement breaking channels ¥y, Us, inequality (99) is likely to
be strict. However this conjecture seems difficult to prove and the authors are
not aware of any proof attempt in the literature.

Finally we want to point out that the convex relaxation of our algorithm for
calculating ||®||; is given by an algorithm for the corresponding diamond norm
|®]|o. This coincides with the folk knowledge that the diamond norm is a stabi-
lized version of the induced 1-norm. It would be interesting to explore, whether
this relation is fundamental, or just an artifact of the particular algorithm we
have used.

5 Conclusion and Outlook

In this work we have focused on the POVM norm constants A and p. These
constants were introduced by W. Matthews, S. Wehner and A. Winter [4] in
the field of state discrimination. They allow for comparing the performance
of an actual informationally complete POVM measurement {M;};_, on a m-
dimensional operator space Herm (X') to the ideal measurement that is given
by the union of all possible POVMs. This attests operational significance to
these numbers. In this thesis we have introduced two methods for computing
or bounding such POVM norm constants.

The first method, dubbed polytope approach, is of geometric nature. It ob-
tains A (or its non-traceless analogue \) via maximizing a convex function over
a convex polytope. Such a maximization corresponds to checking the function’s
value at all extreme points (vertices) of the considered polytope. Hence, the effi-
ciency of the polytope algorithm crucially depends on the number of vertices l.
This number is potentially large and conjectured to scale at most exponentially
in (n —m). Proving this conjecture and explicitly constructing corresponding
intersection polytopes seems challenging and would be very interesting on its
own. Due to the scaling properties of the number of vertices, our approach is
likely to be computationally hard for m < n.

However, our approach is particularly well suited for exactly informationally
complete POVMs {M;};_, over C* (i.e. M, € Pos (C?) for each k =1,...,n)
which obey n = m = d?. In this special case the polytope admits at most
2n (n — 1) vertices which are furthermore known explicitly. Obtaining A (or )
can thus be done efficiently by checking the objective function’s value at each
such vertex. We considered arbitrary SIC POVMs as a special case of such
exactly informationally complete measurements. Due to their high degree of
symmetry we could calculate A = é (and A\ = ﬁ) analytically. This tightens
the previously known bound %ﬁ <AL é from [4]. The polytope approach
is in general not suited well for POVMs that contain a lot of redundancy (i.e.:
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n > m). In such situations, the considered polytope can have exponentially
many vertices. This makes checking the objective function’s value at each ver-
tex computationally hard. However, a relaxed version of the polytope approach
(see subsection 4.2.4) allows for obtaining computationally cheap upper and
lower bounds on A (and X). The worst case accuracy of such a lower bound
is given by ﬁ Note that in this work we have focused on the most general
case and have not considered possible additional structure of the POVMs. We
believe, for instance, that possible POVM symmetries induce restrictions on
the polytope of interest. These restrictions could substantially reduce the poly-
tope’s number of vertices and considerable speed up our algorithm. Another
way of circumvening the infavourable case n > m is to look for clever ways of
redundancy removal. By redundancy removal we mean procedures that convert
an arbitrary informationally complete POVM {M;};_, into an exactly infor-

/ m
mationally complete one {Mk} . If such a procedure conserves A (in the

sense that (1 —¢1) N <A< (14 ¢2) A for c1,c2 > 0 small), it would allow us
to calculate A" instead of A. This can then of course be done efficiently. Exploit-
ing symmetries and looking for redundancy removal procedures that conserve A
constitute interesting follow-up projects.

Our second method, the diamond approach, yields upper and lower bounds
on both POVM norm constants A and p. The upper bounds on y and % (i.e.
the lower bound on \) are much more relevant and obtained via computing the
diamond norm of certain superoperators. We presented an explicit construction
of these superoperators that depends solely on the POVM of interest. Con-
structing this superoperator and then evaluating its diamond norm via an SDP
allows for computing these bounds efficiently. However, the accuracy of these
bounds is not completely understood yet. Interestingly, this precision is closely
related to the question of how useful entanglement is for distinguishing arbitrary
quantum channels. To our knowledge, no full answer to this question is known
yet. It would be of independent interest to further investigate this problem.
Finally, we mention that the less important converse bounds can be computed
efficiently via a similar procedure that uses the fidelity.
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Appendix
Norm constants for a 1-Qubit POVM

In this appendix chapter we present some example calculations for 1-qubit sys-
tems, for which we use Bloch sphere representation. Any density operator
peD ((CQ) is represented by a vector ¥ € R? via

p==(+75), (100)

DN | =

where & = (O‘x,O'y,O'Z)T and ||7]|;z < 1. The operators o,,0y,0, denote the
Pauli matrices'®.

In the first subsection we calculate the POVM-norm constants A and p for
a very simple informationally complete POVM.

The POVM
A simple POVM for one Qubit is given by the following selection of matrices

()= {5001 L g, 30 gloNe | glonol .
(101)
Here we have used the following convention
) = §;m+u» wwzﬁ;m—u»
o) :Aﬁomwm> uwzéim—m»

If we agree on working in the |0}, |1)-basis, we obtain the following matrix ex-
pressions for our POVM elements:

1 1/1 0 1 1/0 0
Aagmmg(oo), Aﬁﬂ”“s(Ol)’
M3_3|+><+|—6(1 1), M4—3|><|—6(1 1 >

1 1/1 —i 1 Lo

A@—gox—6(l 1) A%QOW)‘6<21>

Note that this collection indeed fulfills the defining property of a POVM:

6
11 1
> My = (My + M) + (Ms + Ma) + (Ms + Mg) = 3o + 5T + 51o = I,
k=1

1518.03::(0 1) Jy:<0 7i> Jz:<1 0>
1 0 )’ i 0 ’ 0 -1
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It furthermore contains a basis of all 2 x 2-matrices, which makes it informa-
tionally complete. In order to see this, we point out that

3(M3—M4)—((1) é) and 3i(M5—M6)—(_01 (1))

. . . 1 0 0 0 0 1 0 1
It1s0bv10usthatthecollectlon{(0 0>,<0 1>,<1 0>,<1 0)}

forms a basis of M, (C?).
A straightforward calculation yields the following overlaps between our POVM
elements and the Pauli matrices

1 1

tr {OiMl} = 555, tr {G'jMQ} = —355,
1 1

tr {O'ng} = §5f, tr {O'iM4} = —5(5?,
1 1

tr {UZ‘M5} = 553, tr {O'Z‘Mg} = 75(53

Calculating the POVM-norm constants

Note that the Bloch sphere representation (100) for differences of qubits p — o
amounts to

1 1-
— = (r— t o = 7d_’
poT=4 (7 4) G =: 5dd,
where d = d (F, t_) denotes the corresponding difference vector. This representa-

tion assures tracelessness. We can insert this expression into our measurement
channel and obtain

m(d) = zn: 1) (k] tr{;JaMk}
k=1

k) (k| d'tr {o; M}, }

NE

b
Il
—

/(1| ditr {o: My} + %\2)(2\ditr (oM}

=N = N e

) 1 .

513)Bld'tr {oiMs} + Sa)(dlder {0 Ma}
1 ) 1 .

+ 5Nl {0 Ms} + 3[6) (6ld tr {0 Mo}

1
= 5 1 ({1 = [2)(2) + da (I3)(3] — [4)(4]) + dy (15)(5 = [6){6])} -
From this we can directly infer the corresponding trace-norm value

1 -
1M (p = 1) [l = & (2lda| + 2lda| + 2|dy[) = Flld]l,
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The original trace distance amounts to
Lo,
lp =7l = ll5ddll =Ml + [Aa,

where \; i = 1, 2 denote the eigenvalues of %jﬁ. We can calculate the eigenvalues
of %cf&’ via the standard procedure. Note that

1-, 1 0 1 0 —i 1 0
297 = Q{d’”<1 0>+dy<z' 0)+d2<o —1>}
_ 1 d, dy —id,
T2\ dy+id, —d, '
The characteristic polynomial of this matrix amounts to
1 1 1 . 1 .

1 1 1
2 2 2 2
()\ 4dz 4dz 4dz) .

1 1, =
)\172 = :|:§1/di +d?2J +d2 = :I:§HdHl2

This allows us to calculate the actual distance between p and 7:

p(A)

Therefore:

o =7l = M|+ [A2| = [[d]|2- (102)
Now we are ready to compare the two relevant norms
=7l = |dllz and
[M(p—7) 1

1, -

—||d||1-

Il

We use the basic fact that in n dimensions we have for arbitrary = € R™:

[zlly = (sgn (), z) < [Isgn (z) [l2llz]l2 = Vnllz|2,
which is due to Cauchy-Schwarz. Note that this inequality is actually tight!®
for S»~1 c R™ . In 3 dimensions this indeed assures

1. - 1 -
_ P < 1
M (p=7) Il = gldll < \/§Hd||2 (103)

1H |
= — - 7|1,
\/gp '

t17 inequality ||z||2 < ||x]|1, we can also go

Using another well known and tigh
into the other direction:

- - 3
llo = 7llv = lldll2 < lldll = glldlly = 3|M (p = 7) [l (104)

16Take for example © = % (1,...,1)T. Then ||z||; = Vd and ||z|]2 = 1.

17Take for example z = (1,0,...,0)T, then ||z[2 = 1 = ||z||1.
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Combining (103) and (104) yields
1

\/gllp =7l (105)

1
glo=7lh s [Mp—7)lh <

Therefore we have y = % and )\ = %

A slight generalization of the POVM

As a slight generalization we consider strict convex combinations of the 3 (mu-
tually unbiased) bases {|0),[1)}, {[+),|—)} and {| ©),| ©)}. By this we mean
that we introduce three constants «, 8,7y € |0, 1] such that a + §+ v = 1 and
modify (101) in the following way:

(M (e, B:7))izy = {l0)(O], @l L)(1], Bl+) (], BI=) (=], 7| ONO [, 7] OO [} -

This POVM is still informationally complete, because «, 3,7~ > 0. However, the
trace relations with the Pauli matrices turn into:

tr{o;M1} = ad?, tr{o; Mz} = —ad?,
tr{oiMs} = p&7,  tr{oiMa} = —po7,
tr{o: M5} = ~67, tr {o; Mg} = —v67.

Following the same steps as before, we get
n 1 .
cf) - k) (k| tr 4 =dg M,
M@@) = S pdn

k) (k| d'tr {o; M}, }

=

NE

= N
bl
Il
—

(1| ditr {0 My} + %\2>(Q\ditr (oM}

£ I3l oM} + 5 J4) (ald'tr {0.M)
+ %|5)<5|ditr {o: M5} + %\6)(6\ditr {0 Mg}
= % {ad. (11)(1] = [2)(2) + B (13)(3] = [4){4]) + vdy ([5)(5 — [6)(6])} ,
which results in the following expression:
M (p—7) 1 = % (2ald.| + 268|ds| + 29]dy|) = Blde| + vIdy| + fd-].
Therefore we need to compare the following quantities:

lo =7l = lldle,
[M(p =)l Pld| + yldy| + ald.|.
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Note that

M (p—7) |1 > min (e, 8,7) |d]]1 > min (a, ,7) ||d]|2 = min (e, B,7) |p — 7|1,

which is tight. Hence, we have already found one direction of our bound. For
obtaining the other direction, we proceed in a similar way:

M (p=7) [l < max (a, 8,7) ] < VBmax (a, 8,7) ||d]l> = VBmax (a, 8,7) [lp—7]1,
(106)

which is now not tight anymore!'8. Therefore we have found the following sand-

wich that generalizes (105):

min (o, 3,7) o — 7ll1 < M (p—7) |1 < V3max (a, 8,7) [lp — 7[1.  (107)

Note that (107) indeed contains (105) as a special case for a = = = 1. For
this choice of parameters we obtain a tight!® sandwich.

18 Agsume max (a, B,) = f3, then the first inequality is tight for d = (1,0,0)”, whereas the
second inequality is tight for d = % (1,1, 1)T.
19Note that the first inequality in (106) becomes an equality for a = 8 = .
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