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ABSTRACT. The problem of retrieving phase information from amplitude measurements
alone has appeared in many scientific disciplines over the last century. PhaseLift is a
recently introduced algorithm for phase recovery that is computationally efficient, numer-
ically stable, and comes with rigorous performance guarantees. PhaseLift is optimal in the
sense that the number of amplitude measurements required for phase reconstruction scales
linearly with the dimension of the signal. However, it specifically demands Gaussian ran-
dom measurement vectors — a limitation that restricts practical utility and obscures the
specific properties of measurement ensembles that enable phase retrieval. Here we present
a partial derandomization of PhaseLift that only requires sampling from certain polyno-
mial size vector configurations, called t-designs. Such configurations have been studied in
algebraic combinatorics, coding theory, and quantum information. We prove reconstruc-
tion guarantees for a number of measurements that depends on the degree t of the design.
If the degree is allowed to to grow logarithmically with the dimension, the bounds become
tight up to polylog-factors. Beyond the specific case of PhaseLift, this work highlights the
utility of spherical designs for the derandomization of data recovery schemes.

1. INTRODUCTION

In this work we are interested in the problem of recovering a complex signal (vector)
x ∈ Cd from an intensity measurement y0 = ‖x‖2`2 and amplitude measurements

yi = |〈ai, x〉|2 i = 1, . . . ,m,

where a1, . . . , am ∈ Cd are sampling vectors. Problems of this type are abundant in many
different areas of science, where capturing phase information is hard or even infeasible,
but obtaining amplitudes is comparatively easy. Prominent examples for this case occur
in X-ray cristallography, astronomy and diffraction imaging – see for example [1]. This
inverse problem is called phase retrieval and has attracted considerable interest over the
last decades.

It is by no means clear how many such amplitude measurements are necessary to allow
for recovery. Thus from the very beginning, there have been a number of works regarding
injectivity conditions for this problem in the context of the specific applications [2].

More recently this question has been studied in more abstract terms, asking for the
minimal number of amplitude measurements of the form (1) – without imposing structural
assumptions on the ai’s – that are required to make the above map injective. In [3], the
authors showed that in the real case (x ∈ Rd), at least 2d − 1 such measurements are
necessary and generically sufficient to guarantee injectivity, while in the complex case a
generic sample size of m ≥ 4d − 2 suffices. Here generic is to be understood in the
sense that the sets of measurements of such size which do not allow for recovery form
an algebraic variety in the space of all frames. Also, the latter bound is close to optimal:
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as shown in [4], it follows from the results derived in [5] that a sample size of m ≥
(4 + o(1)) d is necessary (cf. [6]). However, finding the precise bound is still in open
problem.

Balan et al. [7] consider the scenario of O(d2) measurements, which form a complex
projective 2-design (cf. Def. 3 below). They derive an explicit reconstruction formula for
this setup based on the following observation well known in conic programming. Namely,
the quadratic constraints on x are linear in the outer product xx∗:

(1) yi = |〈ai, x〉|2 = tr ((aia
∗
i )(xx

∗)) .

This “lifts” the problem to matrix space of dimension d2, where it becomes linear and can
be explicitly solved to find the unique solution.

As we will show in Theorem 2, it is, without making additional assumptions on the
2-design, not possible to use as measurements a random subset of the design which is of
size o(d2). In other words, for the measurement scenario described in [7], the quadratic
scaling in d is basically unavoidable.

To contrast these two extreme approaches, ref. [3] works with a number of measure-
ments close to the absolute minimum, but there are no tractable reconstruction schemes
provided, the question of numerical stability is not considered, and it is unclear whether
non-generic measurements – i.e., vectors with additional structural properties – can be
employed. On the other hand, the number of measurements in [7] is much larger, while
the measurements are highly structured and there is an explicit reconstruction method. A
number of recent works including this paper aim to balance between these two approaches,
working with a number of measurements only slightly larger while having at least some of
the desired properties mentioned above.

Ref. [8] introduces a reconstruction method called polarization that works forO(d log d)
measurements and can handle structured measurement vectors, including the masked illu-
mination setup that appears in diffraction imaging [9], where the measurements are gener-
ated by the discrete Fourier transform preceded by a random diagonal matrix. For Gaussian
measurements, the polarization approach has also shown to be stable with respect to mea-
surement noise [8]. While simulations seem to suggest stability also for the derandomized
masked illumination setup, a proof of stability is – to our knowledge – not available yet.

An alternative approach, which we will also follow in this paper, is the PhaseLift al-
gorithm, which is based on the lifted formulation (1). The algorithm was introduced in
[10] and reconstruction guarantees have been provided in [11, 12]. The central observation
is that the matrix xx∗, while unknown, is certainly of rank one. This connects the phase
retrievel problem with the young but already extensive field of low-rank matrix recovery
[13, 14, 15, 16]. Over the past years, this research program has rigorously identified many
instances in which low-rank matrices can be efficiently reconstructed from few linear mea-
surements. The existing results on low-rank matrix recovery were not directly applicable
to phase retrieval, because the measurement matrices aia∗i failed to be sufficiently inco-
herent in the sense of [14, 15] (the incoherence parameter captures the well-posedness of
a low-rank recovery problem). For the case of Gaussian measurement vectors ai, Candès,
Strohmer, Voroninski and Li were able to circumvent this problem, providing problem-
specific stable recovery guarantees [11, 12] for a number of measurements of optimal order
O(d). For recovery, they use a convex relaxation of the rank minimization problem, which
makes the reconstruction algorithm tractable.

It should be noted, however, that because of the significantly increased problem di-
mensions, PhaseLift is not as efficient as many phase retrieval algorithms developed over
the last decades in the physics literature (such as [17]) and the optimization literature (for
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example [18]). Recently there have been attempts to provide recovery guarantees for alter-
nating minimization algorithms [19], which are somewhat closer to the algorithms used in
practice, but these direction of research is only at its beginnings.

While the above mentioned recovery guarantees for PhaseLift address the issues of
tractable reconstruction and stability with respect to noise, these results leave open the
question of whether measurement systems with additional structure and less randomness
still allow for guaranteed recovery. There are both practical and theoretical motivations
for pursuing such generalizations: A practitioner may be constrained in the choice of mea-
surements by the application at hand or reduce the amount of randomness required for
implementation purposes. The most prominent example are again masked Fourier mea-
surements, which appear as a natural model in diffraction imaging, but a lot of different
scenarios imposing different structure are conceivable. From a theoretical point of view,
the use of Gaussian vectors obscures the specific properties that make phase retrieval pos-
sible. As discussed in the following subsection, it is a common thread in randomized signal
processing that results are first established for Gaussian measurements and later general-
ized to structured ensembles.

A different direction of research, which will not be pursued in this paper, is to ask how
additional structural assumptions on the signal to be recovered, such as sparsity, can be
incorporated into the theory. A general analysis based on the Gaussian width of how many
measurements are needed to allow for stable recovery of a signal known to lie in a set
T ⊂ Rd is provided in [20]. Notably the results allow for measurements with arbitrary
subgaussian rather than just Gaussian entries. Efficient algorithms for recovery, however,
are not provided. For the case of s-sparse signals, also tractable recovery algorithms are
available: It has been shown in [21] that PhaseLift can recover x with high probability
from Gaussian measurements for a number of measurements m proportional to s2 (up to
logarithmic factors), which, for small s, can be considerably less than the dimension. In
[22], it is shown that only a number of subgaussian measurements scaling linearly in the
sparsity (up to logarithmic factors) is needed if recovery proceeds using certain greedy
algorithms.

1.1. Designs as a general-purpose tool for de-randomization. In this paper, we focus
on the theoretical aspect: which properties of a measurements are sufficient for PhaseLift
to succeed? We prove recovery guarantees for ensembles of measurement vectors drawn at
random from a finite set whose first 2t moments agree with those of Haar-random vectors
(or, essentially, Gaussian vectors). A configuration of finite vectors which gives rise to
such an ensemble is known as a complex projective t-design2. Designs were introduced by
Delsarte, Goethals and Seidel in a seminal paper [23] and have been studied in algebraic
combinatorics [24], coding theory [23, 25], and recently in quantum information theory
[26, 27, 28, 29, 30]. Furthermore, complex projective 2-designs were the key ingredient
for the reconstruction formula for phase retrieval proposed in [7].

One may see a more general philosophy behind this approach. In the field of sparse
and low-rank reconstruction, a number of recovery results had first been established for
Gaussian measurements. In subsequent works, it has then been proven that measurements
drawn at random from certain fixed orthonormal bases are actually sufficient. Examples
include uniform recovery guarantees for compressed sensing ([31, 32] vs. [33, 34]) and

2 The definition of a t-design varies between authors. In particular, what is called a t-design here (and in most
of the physics literature), would sometime be referred to as a 2t or even a (2t + 1)-design. See Section 2.3 for
our precise definition.
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low-rank matrix recovery ([13] vs. [16]), respectively. Typically, the de-randomized proofs
require much higher technical efforts and deliver slightly weaker results.

As the number of measurements needed for phase retrieval is larger than the signal
space dimension, one cannot expect these results to exactly carry over to the phase re-
trieval setting. Nevertheless, the question remains whether there is a larger, but preferably
not too large, set such that measurements drawn from it uniformly at random allow for
phase retrieval reconstruction guarantees. In some sense, the sampling scenario we seek
can be interpreted as an interpolation between the maximally random setup of Gaussian
measurement with an optimal order of measurements and the construction in [7], which
is completely deterministic, but suboptimal in terms of the embedding dimension. While
in this paper, we will focus on the phase retrieval problem, we remark that such an in-
terpolating approach between measurements drawn from a basis and maximally random
measurements may also be of interest in other situations where constructions from bases
are known, but lead to somewhat suboptimal embedding dimensions.

The concept of t-designs, as defined in Section 2.3, provides such an interpolation. The
intuition behind that definition is that with growing t, more and more moments of the
random vector corresponding to a random selection from the t-design agree with the Haar
measure on the unit sphere. In that sense, as t scales up further, t-designs give better and
better approximations to Haar-random vectors.

The utility of this concept as a general-purpose de-randomization tool for Hilbert-space
valued random construtions has been appreciated for example in quantum information the-
ory [27, 35]. It has been compared [27] to the notion of t-wise independence, which plays
a role for example in the analysis of discrete randomized algorithms [36], seems to have
been long appreciated in coding theory. The smallest t-design in Cd consists of O(d2t)
elements. Thus, whenever that lower bound is met, drawing a single element from a design
requires 2t log d bits, as opposed to 2d bits for a complex Bernoulli vector – an exponential
gap.

From a practical point of view, the usefulness of these concepts hinges on the availability
of constructions for designs. Explicit constructions for any order t and any dimension d
are known [28, 37, 38, 39] – however, they are typically “inefficient” in the sense that they
require a vector set of exponential size. For example, the construction in [28] uses O(t)d

vectors which is exponential in the dimension d.
Tighter analytic expressions for exact designs are notoriously difficult to find. Designs

of degree 2 are widely known [40, 41, 42, 43]. A concrete example is used for the converse
bound in Section 6 (as well as for the converse bounds for low-rank matrix recovery from
Fourier-type bases in [15]). For degree 3, both real3 [24] and complex [44] designs are
known. For higher t, there are numerical methods based on the notion of the frame po-
tential [45, 43, 44], non-constructive existence proofs [39], and constructions in sporadic
dimensions (c.f. [46] and references thererin).

Importantly, almost-tight randomized constructions for approximate designs for arbi-
trary degrees and dimensions are known [27, 28, 30]. The simplest results [28] show that
collections of Haar-random vectors form approximate t-designs. This indeed can reduce
randomness: One only needs to expend a considerable amount of randomness once to gen-
erated a design – for subsequent applications it is sufficient to sample small subsets from
it4. Going further, there have been recent deep results on designs obtained from certain

3 While stated only for dimensions that are a power of 2, the results can be used for construtions in arbitrary
dimensions [44].

4 The situation is comparable to the use of random graphs as randomness expanders [47].
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structured ensembles [30]. We do not describe the details here, as they are geared toward
quantum problems and may have to be substantially modified to be applicable to the phase
retrivial. The only connection to phase retrieval to date is the estimation of pure quantum
states [4, 48].

1.2. Main results. In this paper, we show that spherical designs can indeed be used to
partially derandomize recovery guarantees for underdetermined estimation problems; we
generalize the recovery guarantee in [11] to measurements drawn uniformly at random
from complex projective designs, at the cost of a slightly higher number of measurements.

Theorem 1 (Main Theorem). Let x ∈ Cd be the unknown signal. Suppose that ‖x‖2`2 is
known and that m measurement vectors a1, . . . , am have been sampled independently and
uniformly at random from a t-design Dt ⊂ Cd (t ≥ 3). Then, with probability at least
1− e−ω , PhaseLift (the convex optimization problem (25) below) recovers x up to a global
phase, provided that the sampling rate exceeds

(2) m ≥ ω Ct d1+2/t log2 d.

Here ω ≥ 1 is an arbitrary parameter and C is a universal constant.

As the discussion of the previous subsection suggests, the bounds on the sampling rate
decrease as the order of the design increases. For fixed t, and up to poly-log factors, it is
proportional toO(d1+2/t). This is sub-quadratic for the regime t ≥ 3 where our arguments
apply. If the degree is allowed to grow logarithmialy with the dimension (as t = 2 log d),
we recover an optimal, linear scaling up to a polylog overhead, m = O(d log3 d).

The constant C can be bounded by 9394, but we believe this large size to be an artifact
of our proof, as we have made no attempt to optimize it. The interested reader will see that
mild assumptions on the size of d already admit a much smaller constant.

In light of the highly structured, analytical and exact designs known for degree 2 and 3,
it is of great interest to ask whether a linear scaling can already be achieved for some small,
fixed t. As shown by the following theorem, however, for t = 2 not even a subquadratic
scaling is possible if no additional assumptions are made, irrespective of the reconstruction
algorithm used.

Theorem 2 (Converse bound). Let d be a prime power. Then there exists a 2-design D2 ⊂
Cd and orthogonal, normalized vectors x, z ∈ Cd which have the following property.

Suppose that m measurement vectors y1, . . . , ym are sampled independently and uni-
formly at random from D2. Then, for any ω ≥ 0, the number of measurements must obey

m ≥ ω

4
d(d+ 1),

or the event
|〈ai, x〉|2 = |〈ai, z〉|2 ∀ i ∈ {1, . . . ,m}

will occur with probability at least e−ω .

1.3. Outlook. There are a number of problems left open by our analysis. First, recall that
our results achieve linear scaling up to logarithmic factors only when samples are drawn
from a set of superpolynomial size. Thus it would be very interesting to find out whether
there are polynomial size sets such that sampling from them achieves such a scaling, in
particular, if t-designs for some fixed t can be used. The case of t = 3 seems particularly
important in that regard, since the converse bound (Theorem 2) shows that a design order
of at least 3 is necessary. Also, highly structued 3-designs are known to exist (see above).
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Another important follow-up problem concerns approximate t-designs. While our main
result is phrased for exact t-designs, certain scenarios will only exhibit approximate design
properties. We expect that our proofs can be generalized to such a setup, but also leave this
problem for future work. Lastly, the reconstruction quality for noisy measurements is also
an important issue yet to be investigated.

2. TECHNICAL BACKGROUND AND NOTATION

2.1. Vectors, Matrices and matrix valued Operators. In this work we require three
different objects of linear algebra: vectors, matrices and operators acting on matrices.

We will work with vectors in a d-dimensional complex Hilbert space V d equipped with
an inner product 〈·, ·〉. We refer to the associated induced norm by

‖z‖`2 =
√
〈z, z〉 ∀z ∈ V d.

We will denote such vectors by latin characters. For z ∈ V d, we define the dual vector
z∗ ∈ (V d)∗ via

z∗y = 〈z, y〉 ∀y ∈ V d.
On the level of matrices we will exclusively consider d× d dimensional hermitian ma-

trices, which we denote by capital latin characters. Endowed with the Hilbert-Schmitt (or
Frobenius) scalar product

(3) (Z, Y ) = tr(ZY ),

the space Hd becomes a Hilbert space. In addition to that, we will require the 3 different
Schatten-norms

‖Z‖1 = tr(|Z|) (trace norm),

‖Z‖2 =
√

tr(Z2) (Frobenius norm),

‖Z‖∞ = sup
y∈V d

‖Zy‖`2
‖y‖`2

(operator norm),

where the second one is induced by the scalar product (3). These three norms are related
via the inequalities

‖Z‖2 ≤ ‖Z‖1 ≤
√
d‖Z‖2 and ‖Z‖∞ ≤ ‖Z‖2 ≤

√
d‖Z‖∞ ∀Z ∈ Hd.

We call a hermitian matrix Z positive-semidefinite (Z ≥ 0), if 〈y, Zy〉 ≥ 0 for all
y ∈ V d. Positive semidefinite matrices form a cone [49] (Chapter II,12), which induces
a partial ordering of matrices. Concretely, for Z, Y ∈ Hd we write Y ≥ Z if Y − Z is
positive-semidefinite (Y − Z ≥ 0).

In this work, the identity matrix 1 and rank-1 projectors are of particular importance.
They are positive semidefinite and any matrix of the latter kind can be decomposed as
Z = zz∗ for some z ∈ V d. Up to a global phase, they correspond to vectors z ∈ V d.
The most important cases are the projection onto the unknown signal x and onto the ith
measurement vector ai respectively. They will be denoted by

X = xx∗ and Ai = aia
∗
i .

Finally, we will frequently encouter matrix-valued operators acting on the space Hd.
We label such objects with capital caligraphic letters and introduce the operator norm

‖M‖op = sup
Z∈Hd

‖MZ‖2
‖Z‖2
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induced by the Frobenius norm on Hd. It turns out that only very few matrix-valued
operators will appear below. These are: the identity map

I : Hd → Hd

Z 7→ Z ∀Z ∈ Hd

and (scalar multiples of) projectors onto some matrix Y ∈ Hd. The latter corresponds to

ΠY : Hd → Hd

Z 7→ Y (Y, Z) = Y tr(Y Z) ∀Z ∈ Hd.

The operator

Π1 : Z 7→ 1 tr(1Z) = 1 tr(Z) ∀Z ∈ Hd,

is a very important example for this subclass of operators. Note that it is not a normalized
projection, but 1

dΠ1 is. Indeed, for Z ∈ Hd arbitrary

(4)
(
d−1Π1

)2
Z = d−21 tr(1Π1Z) = d−2 tr(1)1 tr(Z) = d−1Π1Z.

The notion of positive-semidefiniteness directly translates to matrix valued operators.
Concretely, we callM positive-semidefinite (M ≥ 0) if (Z,MZ) ≥ 0 for all Z ∈ Hd.
Again, this induces a partial ordering. Like in the matrix case, we write N ≥ M, if
N − M ≥ 0. It is easy to check that all the operators introduced so far are positive
semidefinite and in particular we obtain the ordering

(5) 0 ≤ Π1 ≤ dI,

by using (4).

2.2. Multilinear Algebra. The properties of t-designs are most naturally stated in the
framework of (t-fold) tensor product spaces. This motivates recapitulating some basic
concepts of multilinear algebra that are going to greatly simplify our analysis later on.
The concepts presented here are standard and can be found in any textbook on multilinear
algebra. Our presentation has been influenced in particular by [50, 51].

Let V1, . . . , Vk be (finite dimensional, complex) vector spaces, and let V ∗1 , . . . , V
∗
k be

their dual spaces. A function

f : V1 × · · · × Vk → C

is multilinear, if it is linear in each Vi, i = 1, . . . , k. We denote the space of such functions
by V ∗1 ⊗ · · · ⊗ V ∗k and call it the tensor product of V ∗1 , . . . , V

∗
k . Consequently, the tensor

product
(
V d
)⊗k

=
⊗k

i=1 V
d is the space of all multilinear functions

(6) f :
(
V d
)∗ × · · · × (V d)∗︸ ︷︷ ︸

k times

7→ C,

and we call the elementary elements z1 ⊗ · · · ⊗ zk the tensor product of the vectors
z1, . . . , zk ∈ V d. Such an element can alternatively be defined more concretely via the
Kronecker product of the individual vectors. However, such a construction requires an
explicit choice of basis in V d which is not the case in (6).

With this notation, the space of linear maps V d → V d (d × d-matrices) corresponds
to the tensor product Md := V d ⊗

(
V d
)∗

which is spanned by
{
y ⊗ z∗ : y, z ∈ V d

}
–
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the set of all rank-1 matrices. For this generating set of Md, we define the trace to be the
natural bilinear map

tr : V d ⊗
(
V d
)∗ → C

(y ⊗ z∗) 7→ z∗y = 〈z, y〉
for all y, z ∈ V d. The familiar notion of trace is obtained by extending this definition
linearly to Md.

Using Md = V d ⊗
(
V d
)∗

allows us to define the (matrix) tensor product
(
Md
)⊗k

to
be the space of all multilinear functions

f :
((
V d
)∗ × V d)× · · · × ((V d)∗ × V d)︸ ︷︷ ︸

k times

→ C

in complete analogy to the above. We call the elements Z1 ⊗ · · · ⊗ Zk the tensor product
of the matrices Z1, · · · , Zk ∈Md.

On this tensor space, we define the partial trace (over the i-th system) to be

tri :
(
Md
)⊗k →

(
Md
)⊗(k−1)

Z1 ⊗ · · · ⊗ Zk 7→ tr(Zi) (Z1 ⊗ · · · ⊗ Zi−1 ⊗ Zi+1 ⊗ · · · ⊗ Zk) .

Note that with the identification Md = V d ⊗
(
V d
)∗

, tri corresponds to the natural con-
traction at position i. The partial trace over more than one system can be obtained by
concatenating individual traces of this form, e.g. for 1 ≤ i < j ≤ k

tri,j := tri ◦ trj :
(
Md
)⊗k → (

Md
)⊗(k−2)

.

In particular, the full trace then corresponds to

tr := tr1,...,k :
(
Md
)⊗k → C

(Z1 ⊗ · · · ⊗ Zk) 7→ tr(Z1) . . . tr(Zk).

Let us now return to the tensor space
(
V d
)⊗k

of vectors. We define the (symmetrizer)

map PSymk :
(
V d
)⊗k → (

V d
)⊗k

via their action on elementary elements:

(7) PSymk (z1 ⊗ · · · ⊗ zk) :=
1

k!

∑
π∈Sk

zπ(1) ⊗ · · · ⊗ zπ(k),

where Sk denotes the group of permutations of k elements. This map projects
(
V d
)⊗k

onto the totally symmetric subspace Symk of
(
V d
)⊗k

whose dimension [50] is

(8) dim Symk =

(
d+ k − 1

k

)
.

2.3. Complex projective designs. The idea of (real) spherical designs originates in cod-
ing theory [23] and has been extended to more general spaces in [52, 53, 54]. We refer the
interested reader to Levenshtein [54] for a unified treatment of designs in general metric
spaces and from now on focus on designs in the complex vector space V d.

Roughly speaking, a complex projective t-design is a finite subset of the complex unit
sphere in V d with the property that the discrete average of any polynomial of degree t
or less equals its uniform average. Many equivalent definitions – see e.g. [52, 53, 42] –
capture this essence. However, there is a more explicit definition of a t-design that is much
more suitable for our purpose:
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Definition 3 (Definition 2 in [26]). A finite set {w1, . . . , wN} ⊂ V d of normalized vectors
is called a t-design of dimension d if and only if

(9)
1

N

N∑
i=1

(wiw
∗
i )⊗t = dim(Symt)−1PSymt ,

where PSymt denotes the projector onto the totally symmetric subspace (7) of (V d)⊗t and
consequently dim(Symt) =

(
d+t−1
t

)
.

Note that the defining property (9) is invariant under global phase changes wi 7→ eiφwi,
thus it matches the symmetry of the phase retrieval problem. The definition above is equiv-
alent to demanding

1

N

N∑
i=1

(wiw
∗
i )⊗t =

∫
w

dw (ww∗)⊗t,

where the right hand side is integrated with respect to the Haar measure. This form makes
the statement that t-designs mimic the first 2t moments of Haar measure more explicit.

P. Seymor and T. Zaslavsky proved in [39] that t-designs on V d exist for every t, d ≥ 1,
provided that N is large enough (N ≥ N(d, t)), but they do not give an explicit construc-
tion. A necessary criterion – cf. [53, 42] – for the t-design property is that the number of
vectors N obeys

(10) N ≥
(
d+ dt/2e − 1

dt/2e

)(
d+ bt/2b−1

bt/2c

)
= O(d2t).

However, the proof in [39] is non-constructive and known constructions are “innefi-
cient” in the sense that the number of vectors required greatly exceeds (10). Hayashi et
al. [28] proposed a construction requiring O(t)d vectors. For real spherical designs other
“inefficient” constructions have been proposed [37, 38] (N = tO(d2)) which can be used
to obtain complex projective designs.

Adressing this apparant lack of efficient constructions, Ambainis and Emerson [27]
proposed the notion of approximate desings. These vector sets only fulfill property (9) only
up to an ε-precision, but their great advantage is that they can be constructed efficiently.
Concretely, they show that for every d ≥ 2t, there exists an ε = O(d−1/3) approximate
t-design consisting of O(d3t) vectors only.

The great value of t-designs is due to the following fact: If we sample m vectors
ai, . . . , am iid from a t-design Dt = {w1, . . . , wN}, the design property guarantees (with
Ai = aia

∗
i and Wi = wiw

∗
i )

E

[
1

m

m∑
i=1

A⊗ki

]
= E

[
A⊗k1

]
=

1

N

N∑
i=1

W⊗ki =

(
d+ k − 1

k

)−1
PSymk

for all 1 ≤ k ≤ t. This knowledge about the first t moments of the sampling procedure is
the key ingredient for our partial derandomization of Gaussian PhaseLift [11].

2.4. Large Deviation Bounds. This approach makes heavy use of operator-valued large
deviation bounds. They have been established first in the field of quantum information by
Ahlswede and Winter [55]. Later the first author of this paper and his coworkers success-
fully applied these methods to the problem of low rank matrix recovery [15, 56]. By now
these methods are widely used and we borrow them in their most recent (and convenient)
form from Tropp [57, 58].
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Theorem 4 (Uniform Operator Bernstein inequality, [57, 15]). Consider a finite sequence
{Mk} of independent, random self-adjoint operators. Assume that each random variable
satisfies E [Mk] = 0 and ‖Mk‖∞ ≤ R (for some finite constant R) almost surely and
define the norm of the total variance σ2 := ‖

∑
kE

[
M2
k

]
‖∞. Then the following chain of

inequalities holds for all t ≥ 0.

Pr

[
‖
∑
k

Mk‖∞ ≥ t

]
≤ d exp

(
− t2/2

σ2 +Rt/3

)
≤

{
d exp(−3t2/8σ2) t ≤ σ2/R

d exp(−3t/8R) t ≥ σ2/R.

Theorem 5 (Smallest Eigenvalue Bernstein Inequality, [58]). Let S =
∑
kMk be a sum

of iid random matrices Mk which obey E [MK ] = 0 and λmin(Mk) ≥ −R almost surely
for some fixed R. With the variance parameter σ2(S) = ‖

∑
kE

[
M2
k

]
‖∞ the following

chain of inequalities holds for all t ≥ 0.

Pr [λmin(S) ≤ −t] ≤ d exp

(
− t2/2

σ2 +Rt/3

)
≤

{
d exp(−3t2/8σ2) t ≤ σ2/R

d exp(−3t/8R) t ≥ σ2/R.

2.5. Wiring Diagrams. The defining property (9) of t-designs is phrased in terms of ten-
sor spaces. To work with these notions practically, we need tools for efficiently computing
contractions between high-order tensors. The concept of wiring diagrams provides such a
method – see [50] for an introduction and also [59, 60] (however, they use a slightly dif-
ferent notation). Here, we give a brief description that should suffice for our calculations.

Roughly, the calculus of wiring diagrams associates with every tensor a box, and with
every index of that tensor a line emanating from the box. Two connected lines represent
contracted indices. (More precisely, we place contravariant indices of a tensor on top of
the associated box and covariant ones at the bottom. However, one should be able to digest
our calculations without reference to this detail). A matrix A : V d → V d can be seen
as a two-indexed tensor Aij . It will thus be represented by a node A with the upper line
corresponding to the index i and the lower one to j. Two matrices A,B are multiplied by
contracting B’s “contravariant” index with A’s “covariant” one:

(AB)ij =
∑
k

AikB
k
j

Pictographically, we write

AB =
A

B

The trace operation
A 7→ trA =

∑
k

Akk

corresponds to a contraction of the two indices of a matrix:

tr(A) = A .

Tensor products are arranged in parallel:

A⊗B = A B .

Hence, a partial trace takes the following form:

tr2 (A⊗B) = A B .
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The last ingredient we need are the transpositions σ(i,j) on (V d)⊗t which act by inter-
changing the ith and the jth tensor factor. For example

σ(1,2) (x⊗ y ⊗ · · · ) = y ⊗ x⊗ · · · ,

with x, y ∈ V d arbitrary. Transpositions suffice, because they generate the full group of
permutations. For

(
V d
)⊗2

we only have

1 = (trivial permutation) and σ(1,2) = ,

but for higher tensor systems more permutations can occur. Consequently, permutations
act by interchanging different input and output lines and the wiring diagram representation
allows one to keep track of this pictorially. In fact, only the input and output position of
a line matters. We can use diagrams to simplify expressions by disentangling the corre-
sponding lines. Take σ(1,2) on

(
V d
)⊗2

as an example. Using wiring diagrams we can
derive the standard result

σ2
(1,2) = = = 1

pictorially. We are now ready to prove some important auxiliary results.

Lemma 6. Let A,B ∈ Hd be arbitrary. Then it holds that

(11) tr2
(
PSym2A⊗B

)
=

1

2
(tr(B)A+BA) .

We remark that in general,

PSym2 (X ⊗ Y ) 6= 1

2
(X ⊗ Y + Y ⊗X) ,

which is, in our experience, a common misconception.

Proof of Lemma 6. The basic formula (7) for PSym2 is given by

PSym2 =
1

2

∑
π∈S2

σπ(1),π(2) =
1

2

(
1 + σ(1,2)

)
,

and the concepts from above allow us to translate this into the following wiring diagram:

PSym2 =
1

2

(
+

)
.

(Note that this operator acts on the full tensor space
(
V d
)⊗2

, hence in the wiring diagram
it is represented by a two-indexed box.) Applying the graphical calculus yields

tr2
(
PSym2A⊗B

)
=

A B

PSym2 =
1

2

 A B

+

A B

 =
1

2

 A B

+

A

B


=

1

2
(tr(B)A+BA) ,

which is the desired result. �

Obviously, it is also possible to obtain (11) by direct calculation. We have included
such a calculation in the appendix (Section 8.1) to demonstrate the complexity of direct
calculations as compared to graphical ones.

We conclude this section with the following slightly more involved result.
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Lemma 7. Let A,B,C ∈ Hd be arbitrary. Then it holds that

tr2,3
(
PSym3A⊗B ⊗ C

)
(12)

=
1

6
(A tr(B)tr(C) +BA tr(C) + CAtr(B) +A tr(BC) + CBA+BCA) .

The proof can in principle be obtained by evaluating all permutations of 3 tensor systems
algebraically and taking the partial trace afterwards. However, a pictorial calculation using
wiring diagrams is much faster and more elegant.

Proof. For permutations of three elements, formula (7) implies

PSym3 =
1

6

∑
π∈S3

σπ(1),π(2),π(3) =
1

6
(σ1,2,3 + σ2,1,3 + σ3,2,1 + σ1,3,2 + σ2,3,1 + σ3,1,2) ,

where. σ2,1,3(u⊗ v ⊗ w) = (v ⊗ u⊗ w), etc. This in turn allows us to write

PSym3

A B C

=
1

6

 A B C

+

A B C

+

A B C

+

A B C

+

A B C

+

A B C



=
1

6

 A B C

+

A

B

C

+

A

C

B

+

A

B

C

+

A

B

C

+

A

C

B


=

1

6
(A tr(B)tr(C) +BA tr(C) + CAtr(B) +A tr(BC) + CBA+BCA)

and we are done. �

3. PROBLEM SETUP

3.1. Modelling the sampling process. In the sampling process, we start by measuring
the intensity of the signal:

(13) y0 = ‖x‖2`2 = tr(1X).

This allows us to assume w.l.o.g. ‖x‖`2 = 1. Next, we choose m vectors a1, . . . , am iid at
random from a t-design Dt ⊂ V d and evaluate

(14) yi = tr(AiX) = |〈x, ai〉|2 for i = 1, . . .m,

and consequently the vector y = (y1, . . . , ym)T ∈ Rm+ captures all the information we
obtain from the sampling process. This process can be represented by a measurement
operator

A : Hd → Rm,

Z 7→
m∑
i=1

tr(AiZ)ei,(15)
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where e1, . . . , em denotes the standard basis of Rm. Therefore A(X) = y completely
encodes the measurement process. For technical reasons we also consider the measurement
operator

R : Hd → Hd,

Z 7→ m−1
m∑
i=1

(d+ 1)d ΠAiZ = m−1
m∑
i=1

(d+ 1)dAi tr(AiZ),(16)

which is a renormalized version of A∗A : Hd → Hd. Concretely

R =
(d+ 1)d

m
A∗A.

The scaling is going to greatly simplify our analysis, because it guarantees thatR is “nearly
isotropic”, as the following result shows.

Lemma 8 (R is nearly isotropic). The operator R defined in (16) is near-isotropic in the
sense that

(17) E[R] = I + Π1.

Furthermore, setting S := I − 1
d+1Π1, we have that

(18) SE[R] = E[R]S = I.

Note that S is a contraction. Indeed, as 1
dΠ1 is a projection, it holds that 1

dΠ1 ≤ I and
consequently

0 ≤ 1

d+ 1
I = I − d

d+ 1
I ≤ I − 1

d+ 1
Π1 = S ≤ I.

This in turn implies spec(S) ∈ [1/(d+ 1), 1].

Proof of Lemma 8. Let us start with deriving (17). For Z ∈ Hd arbitrary we have

E[R]Z =
(d+ 1)d

m

m∑
i=1

E[Ai tr(AiZ)]

= (d+ 1)d tr2
(
E[A⊗21 ]1⊗ Z

)
(19)

= 2 tr2
(
PSym21⊗ Z

)
(20)

= Z + 1(trZ) =
(
I + Π1

)
Z.

Here, (19) follows from the fact that the ai’s are chosen iid from a t-design, (20) uses
the fact that dim(Sym2) =

(
d+1
2

)−1
together with Definition 3, and the final line is an

application of Lemma11.
For the second claim, note that E[R] and S commute and we get

SE[R] = E[R]S = (I + Π1)(I − 1

d+ 1
Π1)

= I + Π1 −
1

d+ 1
Π1 −

1

d+ 1
Π2
1

= I + (1− 1

d+ 1
− d

d+ 1
)Π1 = I

as intended. Here we have used (5) (Π2
1

= dΠ1). �
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Let now x ∈ V d be the signal we want to recover. As in [11] we consider the space

(21) T :=
{
xz∗ + zx∗ : z ∈ V d

}
⊂ Hd

(which is the tangent space of the manifold of all hermitian matrices at the pointX = xx∗).
This space is of crucial importance for our analysis. The orthogonal projection onto this
space can be given explicitly:

PT : Hd → T,

Z 7→ XZ + ZX −XZX(22)
= XZ + ZX − (X,Z)X.(23)

We denote the projection onto its orthogonal complement with respect to the Frobenius
inner product by P⊥T . Then for any matrix Z ∈ Hd the decomposition

Z = PTZ + P⊥T Z =: ZT + Z⊥T

is valid. We point out that in particular

(24) PTΠ1PT = ΠX

holds. We will frequently use this fact. For a proof, consider Z ∈ Hd arbitrary and insert
the relevant definitions:

PTΠ1PTZ = PT1 tr(1PTZ) = (X1+ 1X −X1X) tr (XZ + ZX −XZX)

= X tr(XZ) = ΠXZ.

3.2. Convex Relaxation. Following [3, 11, 12] the measurements (13) and (14) can be
translated into matrix form by applying the following “lifts”:

X := xx∗, and Ai := aia
∗
i .

By doing so the measurements assume the a linear form:

y0 = ‖x‖22 = (1, X) = tr(X),

yi = (Ai, X) = Tr (AiX) i = 1, . . . ,m.

Hence, the phase retrivial problem becomes a matrix recovery problem. The solution to
this is guaranteed to have rank 1 and encodes (up to a global phase) the unknown vector
x via X = xx∗. Relaxing the rank minimization problem (which would output the cor-
rect solution) to a trace norm minimization yields the now-familiar convex optimization
problem

minargX′ ‖X ′‖1(25)
subject to (Ai, X

′) = yi i = 1, . . .m,

X ′ = (X ′)
†
,

tr(X ′) = 1,

X ′ ≥ 0.

While this convex program is formally equivalent to the previously studied general-purpose
matrix recovery algorithms [13, 14, 15], there are two important differences:

• The measurement matrices Ai are rank-1 projectors: Ai = aia
∗
i .

• The unknown signal is known to be proportional to a rank-1 projector (X = xx∗)
as well.
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While the second fact is clearly of advantage for us, the first one makes the problem
considerably harder: In the language of [15], it means that the “incoherence parameter”
µ = dmaxi=1,...,m ‖Ai‖∞ = d‖ai‖2`2 = d is as large as it can get! Higher values of
µ correspond to more ill-posed problems and as a result, a direct application of previous
low-rank matrix recovery results fails. It is this problem that Refs. [11, 12] first showed
how to circumvent for the case of Gaussian measurements. Below, we will adapt these
ideas to the case of measurements drawn from designs, which necessitates following more
closely the approach of [15].

3.3. Well-posedness / Injectivity. In this section, we follow [11, 15] to establish a certain
injectivity property of the measurement operator A. Compared to [11], our injectivity
properties are somewhat weaker. Their proof used the independence of the components of
the Gaussian measurement operator, which is not available in this setting, where individual
vector components might be strongly correlated. We will pay the price for these weaker
bounds in Section 5. There, we construct an “approximate dual certificate” that proves that
the sought-for signal indeed minimizes the nuclear norm. Owing to the weaker bounds
found here, the construction is more complicated than in [11]. In the language of [15], we
will have to carry out the full “golfing scheme”, as opposed to the “single leg” that proved
sufficient in [11].

Proposition 9. With probability of failure smaller than d2 exp(− 3m
384d ) the inequality

(26) 0.25d−2‖Z‖22 < m−1‖A(Z)‖22
is valid for all matrices Z ∈ T simultaneously.

Proof. We aim to show the more general statement

Pr
[
m−1‖A(Z)‖22 < 0.5(1− δ)‖Z‖22 ∀Z ∈ T

]
≤ d2 exp

(
−3mδ2

96d

)
for any δ ∈ (0, 1).

For Z ∈ T abritrary use near-isotropicity ofR (E[R] = I + Π1) and observe

m−1‖A(Z)‖22

= m−1
m∑
i=1

(tr(ZAi))
2

= tr(Zm−1
∑
i

Ai tr(AiZ)) =
1

(d+ 1)d
tr(ZRZ)

=
1

(d+ 1)d
tr(Z(R−E[R])Z) +

1

(d+ 1)d
tr(Z(I + Π1)Z)

=
1

(d+ 1)d
tr(ZPT (R−E[R])PTZ) +

1

(d+ 1)d
(tr(Z2) + (trZ)2)

≥ 0.5d−2
(
tr(ZPT (R−E[R])PTZ) + tr(Z2)

)
≥ 0.5d−2(1 + λmin (PT (R−E[R])PT ) ‖Z‖22,(27)

where we have usedPTZ = Z as well asM≥ λmin(M)I for any operatorM. Therefore
everything boils down to bounding the smallest eigenvalue of PT (R−E[R])PT . To this
end we aim to apply Theorem 5 and decompose

PT (R−E[R])PT =

m∑
i=1

(Mi −E[Mi]) with Mi =
(d+ 1)d

m
PTΠAiPT .
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Note that these summands have mean zero by construction. Furthermore observe that the
auxiliary result (24) implies

− 2

m
I ≤ − 1

m
I − 1

m
ΠX ≤ −

1

m
PTIPT −

1

m
PTΠ1PT

= −PTE[Mi]PT ≤ PT (Mi −E[Mi])PT
and the a priori bound

λmin(Mi −E[Mi]) ≥ −2/m =: −R

follows. For the variance we use the standard identity

0 ≤ E[(Mi −E[Mi])
2] = E[M2

i ]−E[Mi]
2 ≤ E[M2

i ]

and focus on the last expression. Writing it out explicitly yields

0 ≤ E[M2
i ] =

(d+ 1)2d2

m2
PTE [ΠAiPTΠAi ]PT

=
(d+ 1)2d2

m2
PTE [tr(AiPTAi)ΠAi ]PT .

The trace can be bounded from above by

tr(AiPTAi) = tr
(
Ai(XAi +AiX − tr(AiX)X)

)
= 2 tr(AiX)− tr(AiX)2 ≤ 2 tr(AiX),

where we have used the basic definition of PT and 0 ≤ tr(AiX) = |〈ai, x〉|2 ≤ 1.
Consequently, for Z ∈ T arbitrary

PTE[M2
i ]PTZ

≤ 2(d+ 1)2d2

m2
PTE [Ai tr(AiX) tr(AiZ)]

=
2(d+ 1)2d2

m2
PT tr2,3

(
E[A⊗3i ]1⊗X ⊗ Z

)
=

12(d+ 1)2d2

m2(d+ 2)(d+ 1)d
PT tr2,3

(
PSym31⊗X ⊗ Z

)
≤ 2d

m2
PT (1 tr(Z) +X tr(Z) + Z + 1 tr(XZ) + ZX +XZ)

=
2d

m2
(X tr(XZ) +X tr(XZ) + Z +X tr(XZ) + PTZ +X tr(XZ))

=
2d

m2
(4ΠX + 2I)Z ≤ 12d

m2
IZ.

Here we have applied dim Sym3 =
(
d+2
3

)−1
and Lemma 7 in lines 3 and 4, respectively.

Furthermore we usedZ ∈ T – hencePTZ = Z and tr(Z) = tr(XZ) – as well as the basic
definition (23) of PT to simplify the terms occuring in the fourth line. Putting everything
together yields

E[(Mi −E[Mi])
2] ≤ E[M2

i ] ≤
12d

m2
I

and we can safely set σ2 := 12d
m . Now Theorem 5 tells us

Pr [λmin (PT (R−E[R])PT ) ≤ −δ] ≤ d2 exp

(
− 3mδ2

8× 12d

)
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for all 0 ≤ δ ≤ 1 ≤ 6d = σ2/R. This gives the desired bound on the event

{λmin(PT (R−E[R])PT ) ≤ −δ}

occuring. If this is not the case, (27) implies

m−1‖A(Z)‖2`2 > 0.5d−2(1− δ)‖Z‖22
for all matrices Z ∈ T simultaneously. This is the general statement at the beginning of
the proof and setting δ = 1/2 yields Proposition 9. �

Proposition 10. Let A be as above with vectors sampled from a t-design (t ≥ 1). Then
the statement

(28) m−1‖A(Z)‖2`2 ≤ ‖Z‖
2
2

holds with probability one for all matrices Z ∈ Hd simultaneously.

Proof. Pick Z ∈ Hd arbitrary and observe

‖A(Z)‖2`2 =
1

m

m∑
i=1

(tr(AiZ))
2

= tr

(
Z

(
1

m

m∑
i=1

ΠAi

)
Z

)
≤ tr(ZIZ) = ‖Z‖22,

where we have used 0 ≤ ΠAi ≤ I. �

Note that equation (28) can be improved. Indeed, a standard application of the Operator
Bernstein inequality (Theorem 4) gives

m−1‖A(Z)‖2`2 ≤ 2d−1‖Z‖22
for all matrices Z ∈ T with probability of failure smaller than d2 exp (−Cm/d) for some
0 < C ≤ 1. However, we actually do not require this tighter bound.

4. PROOF OF THE MAIN THEOREM / CONVEX GEOMETRY

In this section, we will follow [15, 14] to prove that the convex program (25) indeed
recovers the sought for signal x, provided that a certain geometric object – an approximate
dual certificate – exists.

Definition 11 (Approximate dual certificate). Assume that the sampling process corre-
sponds to (13) and (14). Then we call Y ∈ Hd an approximate dual certificate, provided
that Y ∈ span (1, A1, . . . , Am) and

(29) ‖YT −X‖2 ≤
1

4d
as well as ‖Y ⊥T ‖∞ ≤

1

2
.

Proposition 12. Suppose that the measurement gives us access to ‖x‖2`2 and yi = |〈ai, x〉|2
for i = 1, . . . ,m. Then the convex optimization (25) recovers the unknown x (up to a
global phase) provided that (26) holds and an approximate dual certificate Y exists.

Proof. Let X̃ ∈ Hd be an arbitrary feasible point of (25) and decompose it as X̃ = X+∆.
Feasibility then implies A(X̃) = A(X) and A(∆) = 0 must in turn hold for any feasible
displacement ∆. Now the pinching inequality [61] (Problem II.5.4) implies

‖X̃‖1 = ‖X + ∆‖1 ≥ ‖X‖1 + tr(∆T ) + ‖∆⊥T ‖1.

Consequently X is guaranteed to be the unique minimum of (25), if

(30) tr(∆T ) + ‖∆⊥T ‖1 > 0
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is true for every feasible ∆. In order to show this we combine feasibility of ∆ with in-
equalities (26) and (28) to obtain

(31) ‖∆T ‖2 < 2dm−1/2‖A(∆T )‖`2 = 2dm−1/2‖A(∆⊥T )‖`2 ≤ 2d‖∆⊥T ‖2.

Feasibility of ∆ also implies (Y,∆) = 0, because by defnition Y is in the range of A∗.
Combining this insight with the defining property (29) of Y and (31) yields

0 = (Y,∆) = (YT −X,∆T ) + (X,∆T ) + (Y ⊥T ,∆
⊥
T )

≤ ‖YT −X‖2‖∆T ‖2 + tr(∆T ) + ‖Y ⊥T ‖∞‖∆⊥T ‖1
< tr(∆T ) + ‖YT −X‖22d‖∆⊥T ‖2 + ‖Y ⊥T ‖∞‖∆⊥T ‖1r
≤ tr(∆T ) + 1/2‖∆⊥T ‖2 + 1/2‖∆⊥T ‖1
≤ tr(∆T ) + ‖∆⊥T ‖1,

which is just the desired optimality criterion (30). �

5. CONSTRUCTING THE DUAL CERTIFICATE

A straightforward approach to construct an approximate dual certificate would be to set

(32) Y = SRX =
(d+ 1)d

m

m∑
i=1

SAi tr(AiX) ∈ span (1, A1, . . . , Am) .

In expectation, E[Y ] = X , which is the “perfect dual certificate” in the sense that the
norm bounds in (29) vanish. The hope would be to use the Operator Bernstein inequality
to show that with high probablity, Y will be sufficiently close to its expectation. It has been
shown that a slight refinement of the ansatz (32) indeed achieves this goal Ref. [15, 62].
However, the Bernstein bounds depend on the worst-case operator norm of the summands.
In our case, they can be as large as d2|〈ai, x〉|2, which can reach d2. This is far larger
than in previous low-rank matrix recovery problems. Ref. [11] relied on the fact that large
overlaps |〈ai, x〉|2 � O(d−1) are “rare” for Gaussian ai.

The key observation here is that the t-design property provides one with useful infor-
mation about the first t moments of the random variable |〈x, ai〉|2. This knowledge allows
us to explicitly bound the probability of “dangerously large overlaps” or “coherent mea-
surement vectors” occurring.

Lemma 13 (Undesired events). Let x ∈ V d be an arbitrary vector of unit length. If a is
chosen uniformly at random from a t-design (t ≥ 1) Dt ⊂ V d, then the following is true
for every γ ≤ 1:

(33) Pr
[
|〈a, x〉|2 ≥ 5td−γ

]
≤ 4−td−t(1−γ).

Proof. We aim to prove the slightly more general statement

Pr
[
|〈a, x〉|2 ≥ (δ + 1)td−γ

]
≤ δ−td−t(1−γ),

which is valid for any δ ≥ 1. Setting δ = 4 then yields (33). The t-design property
provides us with useful information about the first t moments of the non-negative random
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variable ξ = |〈a, x〉|2. Indeed, with A = aa∗ it holds for every k ≤ t that

E
[
ξk
]

= E
[
tr(AX)k

]
= tr

(
E
[
A⊗k

]
X⊗k

)
=

(
d+ k − 1

k

)−1
tr
(
PSymkX

⊗k)
=

(
d+ k − 1

k

)−1
tr
(
X⊗k

)
≤ d−kk!,

becauseX⊗k is invariant underPSymk . One way of seing this5 is to note that range(X⊗k) =

span(x⊗k) and the latter is already contained in Symk. Therefore the k-th moment τk of
ξ is bounded by

τk =
(
E[ξk]

)1/k ≤ (d−kk!)1/k ≤ k/d.
These inequalities are tight for the mean µ = τ1 of ξ and hence

µ = E[ξ] = d−1.

Now we aim to use the well-known t-th moment bound

Pr [|ξ − µ| ≥ sτt] ≤ s−t,
which is a straightforward generalization of Chebyshev’s inequality. Applying it, yields
the desired result. Indeed,

Pr
[
|〈a, x〉|2 ≥ (δ + 1)td−γ

]
= Pr

[
ξ − µ ≥ (δ + 1)td−γ − d−1

]
≤ Pr

[
ξ − µ ≥ δtd−γ

]
≤ Pr

[
|ξ − µ| ≥ δd1−γτt

]
≤ δ−td−t(1−γ),

and we are done. �

The previous lemma bounds the probability of the undesired events

(34) Eci =
{
|〈ai, x〉|2 ≥ 5td−γ

}
,

where 0 ≤ γ ≤ 1 is a fixed parameter which we refer to as the truncation rate. It turns out
that a single truncation of this kind does not quite suffice yet for our purpose. We need to
introduce a second truncation step.

Definition 14. Fix Z ∈ T arbitrary and decompose it as

Z = ζ (xz∗ + zx∗) ,

for some unique ζ > 0 and z ∈ V d with ‖z‖`2 = 1. For this z we introduce the event

Gci :=
{
|〈z, ai〉|2 ≥ 5td−γ

}
and define the two-fold truncated operator

(35) RZ := Rz =
(d+ 1)d

m

m∑
i=1

1Ei1GiΠAi ,

5Alternatively one could also rearange tensor systems: X⊗k = (xx∗)⊗k ' x⊗k(x∗)⊗k and use
PSymkx

⊗k = x⊗k .
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where 1Ei and 1Gi denote the indicator functions associated with the events Ei and Gi,
respectively.

The following result shows that due to Lemma 13 this truncated operator is in expecta-
tion close to the originalR.

Proposition 15. Fix Z ∈ T arbitrary and letRZ be as in (35). Then

(36) ‖E[RZ −R]‖op ≤ 41−td2−t(1−γ)

Proof. We start by introducing the auxiliar (singly truncated) operator

Raux :=
(d+ 1)d

m

m∑
i=1

1EiΠAi

and observe

(37) ‖E [RZ −R] ‖op ≤ ‖E [R−Raux] ‖op + ‖E [RZ −Raux] ‖op.

Now use Lemma 13 to bound the first term:

‖E[R−Raux]‖op =

∥∥∥∥∥ (d+ 1)d

m

m∑
i=1

E [(1− 1Ei)ΠAi ]

∥∥∥∥∥
op

≤ (d+ 1)d

m

m∑
i=1

E
[
1Eci ‖ΠAi‖op

]
≤ 2d2

m

m∑
i=1

E
[
1Eci
]

=
2d2

m

m∑
i=1

Pr[Eci ]

≤ 2d2 × 4−td−t(1−γ) = 21−2td2−t(1−γ).

Similarily,

‖E[Raux −RZ‖op =
(d+ 1)d

m

∥∥∥∥∥
m∑
i=1

E
[
1GciΠAi

]∥∥∥∥∥
op

≤ 2d2

m

m∑
i=1

E[1Gci ]

≤ 2d2

m

m∑
i=1

Pr[Gci ] ≤ 21−2td2−t(1−γ)

and inserting these bounds into (37) yields the desired statement. �

We now establish a technical result which will allow us to find a suitable approximate
dual certificate using the “golfing scheme” construction [15, 62].

Proposition 16. Fix Z ∈ T arbitrary, let RZ be as in (35). Assume that that the design
order t is at least 3 and the truncation rate γ satisfies

γ ≤ 1− 2/t.

Then for 1/4 ≤ b ≤ 1 and c ≥
√

2b with probability at least 1 − d exp(− 9mb
640td2−γ ) one

has

‖P⊥T SRZZ‖∞ ≤ b‖Z‖2 and(38)
‖PT (SRZ − I)Z‖2 ≤ c‖Z‖2.(39)

(Recall the definition S := I − 1
d+1Π1 from Lemma 8).
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Proof. The statement is invariant under rescaling of Z. Therefore it suffices to treat the
case ‖Z‖2 = 1. In this case we can decompose

Z = ζ(zx∗ + zx∗)

with some fixed z ∈ V d obeying ‖z‖`2 = 1 and 0 < ζ ≤ 1. Isotropicity (Lemma 8) of
SR guarantees P⊥T SE[R]Z = 0 as well as PTSE[R]Z = Z. Let us now focus on (38)
and use Proposition 15 in order to write

‖P⊥T SRZZ‖∞
= ‖P⊥T S (RZ −E[R])Z‖∞
≤ ‖P⊥T S (RZ −E[RZ ])Z‖∞ + ‖P⊥T SE[RZ −R]Z‖∞
≤ ‖P⊥T ‖op‖S‖op‖(RZ −E[RZ ])Z‖∞ + 41−td2−t(1−γ)‖P⊥T ‖op‖S‖op‖Z‖2
≤ ‖(RZ −E[RZ ])Z‖∞ + b/4.

Here we have used ‖S‖op ≤ 1, ‖P⊥T ‖op ≤ 1 as well as

(40) ‖E [RZ −R] ‖op ≤ 41−td2−t(1−γ) ≤ 41−t ≤ 1/16 ≤ b/4,

which follows from γ ≤ 1 − 2/t, t ≥ 3 and b ≥ 1/4. To obtain (39) we use a similar
reasoning:

‖PTS (RZ − I)Z‖2
= ‖PTS (RZ −E[R])Z‖2
≤
√

2‖PTS (RZ −E[RZ ])Z‖∞ + ‖PTSE[RZ −R]Z‖2
≤
√

2‖PT ‖op‖S‖op‖(RZ −E[RZ ])Z‖∞ + b/4‖PT ‖op‖S‖op‖Z‖2
≤
√

2‖ (RZ −E[RZ ])Z‖∞ + b/4,

where we have used the fact that PT projects onto a subspace of at most rank-2 matrices
in the third line and (40) in the fourth. This motivates to define the event

E := {‖ (RZ −E[RZ ])Z‖∞ ≤ 3b/4}

which guarantees both (38) and (39) due to the assumption on c and ‖Z‖2 = 1. So
everything boils down to bounding the probability of Ec. We decompose

(RZ −E[RZ ])Z =

m∑
i=1

(Mi −E[Mi]) with Mi =
(d+ 1)d

m
1Ei1GiAi tr(AiZ).

We will estimate this sum using the Operator Bernstein inequality (Theorem 4). Thus we
need an a priori bound for the summands

‖Mi‖∞ =
(d+ 1)d

m
1Ei1Gi‖Ai‖∞| tr(AiZ)| ≤ 2d2

m
1Ei1Gi2|〈x, ai〉||〈z, ai〉|

≤ 4d2

m
5td−γ =

20

m
td2−γ =: R,

as well as a bound for the variance. First observe that

E[(Mi −E[Mi])
2] = E

[
M2
i

]
−E[Mi]

2 ≤ E
[
M2
i

]
.
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and therefore

E
[
M2
i

]
=

(d+ 1)2d2

m2
E
[
1Ei1Gi tr(AiZ)2A2

i

]
≤ (d+ 1)2d2

m2
E
[
tr(AiZ)2A2

i

]
=

(d+ 1)2d2

m2
tr2,3

(
E[A⊗3i ]1⊗ Z ⊗ Z

)
=

6(d+ 1)d

m2(d+ 2)
tr2,3

(
PSym31⊗ Z ⊗ Z

)
≤ d

m2

(
1 tr(Z)2 + Z tr(Z) + Z + 1 tr(Z2) + 2Z2

)
≤ 8d

m2
‖Z‖221 =

8d

m2
1.

Here we have used tr(Z) ≤
√

2‖Z‖2, Z2 ≤ ‖Z‖221 and ‖Z‖2 = 1. From this we can
conclude ∥∥∥∑

i

E[(Mi −E[Mi])
2
∥∥∥
∞
≤ m max

i=1,...,m
‖E[M2

i ]‖∞ ≤
8d

m
=: σ2.

Observing that
σ2

R
≤ 8

20t
dγ−1 ≤ 2

15
≤ 3

4
b,

Theorem 4 yields

Pr [Ec] = Pr [‖ (RZ −E[RZ ])Z‖∞ > 3b/4] ≤ d exp

(
− 3× 3mb

8× 4× 20td2−γ

)
,

as desired. �

With this ingredient we can now construct a suitable approximate dual certificate Y ,
closely following [62].

Proposition 17. Let x ∈ V d be an arbitrary normalized vector (‖x‖`2 = 1), X = xx∗

and let ω ≥ 1 be arbitrary. If the design order t (t ≥ 3) and the truncation rate γ is chosen
such that

γ ≤ 1− 2/t

holds and the total number of measurements fulfills

(41) m ≥ 9394ωtd2−γ log2(d),

then with probability larger than 1 − 0.5e−ω , there exists an approximate dual certificate
Y as in Def. 11.

Proof. Our construction of Y follows a recursive scheme of l iterations. The i-th iteration
depends on 3 parameters mi ∈ N and bi, ci ∈ (0, 1) which will be chosen later on. To
initialize set

Y0 = 0

(the Yi’s, i ≥ 1, will be defined iteratively below). Define

Qi = X − PTYi ∈ T.

The i-th step proceeds according to the following protocol:
We samplemi vectors iid from the t-desingDt. Let R̃Qi−1 be the measurement operator

of length mi introduced in Definiton 14 (so the summands are conditioned on Ei and Gi
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for Qi−1 ∈ T ). Then we check whether for b = bi and c = ci equations (38) and (39) are
satisfied. If so, setR(i)

Qi−1
= R̃Qi−1 as well as

Yi = SR(i)
Qi−1
PT (X − Yi−1) + Yi−1

and proceed to step i + 1. If either of the bounds (38, 39) does not hold, repeat the i-th
step with a fresh batch of mi measurements drawn iid from Dt. Denote the probability of
having to repeat the i-th step by perr(i) and the eventual number of repetitions by ri ≥ 1.

The following identities are easily verified (c.f. [62][Lemma 14]):

Y := Yl = SR(l)
Ql−1
PT (X − Yl−1) + Yl−1 =

l∑
i=1

SR(i)
Qi−1

Qi−1 and

Qi = X − PTYi =

i∏
j=1

PT (I − SR(j)
Qj−1

)X.

The validity of properties (38) and (39) in each step guarantee

‖YT −X‖2 = ‖Ql‖2 ≤
l∏
i=1

ci‖Q0‖2 =

l∏
i=1

ci‖X‖2 =

l∏
i=1

ci,

‖Y ⊥T ‖∞ =

∥∥∥∥∥P⊥T
l∑
i=1

SR(i)
Qi−1

Qi−1

∥∥∥∥∥
∞

≤
l∑
i=1

∥∥∥P⊥T SR(i)
Qi−1

Qi−1

∥∥∥
∞

≤
l∑
i=1

bi‖Qi−1‖2 = b1 +

l∑
i=2

bi

i−1∏
j=1

cj .

Now choose parameters

l = dlog2 de+ 2, bi =
1

4
, ci =

1

2
,

which obey the conditions (1/4 ≤ bi ≤ 1 and ci ≥
√

2bi) required for Proposition 16.
These constants assure

‖YT −X‖2 = ‖Ql‖2 = 2−l ≤ 1

4d
,

‖Y ⊥T ‖∞ ≤ b1 +

l∑
i=2

bi

i−1∏
j=1

cj ≤
1

4
+

1

4

∞∑
i=1

2−i =
1

2
,

which are precisely the requirements on Y .
Next, we estimate the probability perr that the total number of measurements

l∑
i=1

miri

exceeds the bound (41). To that end, it is fruitful to think of a random walk which advances
from position i to i+ 1 if a newly sampled batch fulfills equations (38), (39), and remains
at position i if that is not the case, i.e. with probability perr(i). In that sense, perr is the
probability that the random walker fails to reach position l before exceeding the allowed
number of trials.
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To obtain concrete numbers, choose mi = 854td2−γ log d. Then Propostion 16 gives

perr(i) ≤ d exp

(
− 9mi

2560td2−γ

)
≤ e−3 ≤ 1/20.

Dividing the advertised total number of measurements (41) by mi shows that one can
sample

(42) l′ = 2l + 3ω + 6 log 2

batches. The total failure probability perr is thus the probability that fewer than l successes
occur in l′ trials with individual failure probabilty smaller than 1/20. This can be estimated
using a standard concentration bound for binomial random variables, e.g.

Pr [|Bin(n, p)− np| ≥ τ ] ≤ 2 exp

(
− τ2

3np

)
from [63, Section Concentration]. In this particular situation n = l′, p = 19/20 and
τ = (l′ − l) is adequate. The choice of l′ – equation (42)– then assures

perr ≤ Pr [Bin(l′, 19/20)− 19/20l′| ≥ l′ − l] ≤ 2 exp

(
−20(l′ − l)2

3l′19

)
≤ 0.5e−ω,

Note that our choice of l′ is not tight, but suffices for our purpose. Consequently perr ≤
0.5e−ω which is the desired bound on the probability of our construction failing. �

Finally we are ready to put all pieces together and show or main result – Theorem 1.

Proof of the Main Theorem. In section 4 (Proposition 12) we have shown that the algo-
rithm (25) recovers the sought for signal x, provided that (26) holds and a suitable ap-
proximate dual certificate Y exists. Proposition 17 – with a maximal truncation rate of
γ = (1 − 2/t) – implies that the probability that no such Y can be constructed is smaller
than 0.5e−ω , provided that the sampling rate m obeys

(43) m ≥ 9394ωtd1+2/t log2 d,

Furthermore, Proposition 9 implies that the probability of (26) failing is also bounded by
0.5e−ω . Theorem 1 now follows from the union bound over these two probabilities of
failure. �

6. CONVERSE BOUND

In this paper, we require designs of order at least three. Here we prove that this criterion
is fundamental in the sense that sampling from 2-designs in general cannot guarantee a sub-
quadtratic sampling rate. In order to do so, we will use a particular sort of 2-design, called
a maximal set of mutually unbiased bases (MUBs) [40, 41, 42, 43]. Two orthonormal bases
{ui}di=1 and {vi}di=1 are called mutually unbiased if their overlap is uniformly minimal.
Concretely, this means that

|〈ui, vj〉|2 =
1

d
∀i, j = 1, . . . , d

must hold for all i, j = 1, . . . , d. Note that this is just a generalization of the incoherence
property between standard and Fourier basis. In prime power dimensions, a maximal set
of (d + 1) such MUBs is known to exist (and can be constructed) [64]. Such a set is
maximal in the sense that it is not possible to find more than (d+ 1) MUBs in any Hilbert
space. Among other interesting properties – cf. [65] for a detailed survey – maximal sets
of MUBs are known to form 2-designs [41, 43].
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The defining properties of a maximal set of MUBs allow us to derive the converse bound
– Theorem 2.

Theorem 18 (Converse bound). Let d ≥ 2 be a prime power and let D2 ⊂ Cd be a
maximal set of MUBs. Then there exist orthogonal, normalized vectors x, z ∈ Cd which
have the following property.

Suppose that m measurement vectors y1, . . . , ym are sampled independently and uni-
formly at random from D2. Then, for any ω ≥ 0, the number of measurements must obey

(44) m ≥ ω

4
d(d+ 1),

or the event
|〈ai, x〉|2 = |〈ai, z〉|2 ∀ i ∈ {1, . . . ,m}

will occur with probability at least e−ω .

Consequently a scaling of O(d2) in general cannot be avoided when using only 2-
designs and requiring a “reasonably small” probability of failure in the recovery process.

Proof of Theorem 18. Suppose that {ui}di=1 is one orthonormal basis contained in the
maximal set of MUBs D2 and set x := u1 as well as z := u2. Note that by definition
these vectors are orthogonal and normalized. Due to the particular structure of MUBs, x
and z can only be distinguished if either u1 or u2 is contained in {a1, . . . , am}. Since
each ai is chosen iid at random from D2 containing (d + 1)d elements, the probability of
obtaining either u1 or u2 is p = 2

(d+1)d . As a result, the problem reduces to the following
standard stopping time problem (cf. for example Example (2) in Chapter 6.2 in [66]):

Suppose that the probability of success in a Bernoulli experiment is p. How many trials
m are required in order for the probability of at least one success to be 1− eω or larger?

To answer this question, we have to find the smallest integer m such that

(45) 1− (1− p)m ≥ 1− e−ω, or equivalently −m log(1− p) ≥ ω.
The standard inequality

p ≤ − log(1− p) ≤ p

1− p
≤ 2p

for any p ∈ [0, 1/2] implies that (44) is a necessary criterion for (45) and we are done. �

7. CONCLUSION

In this paper we have derived a partly derandomized version of Gaussian PhaseLift
[11, 12]. Instead of Gaussian random measurements, our method guarantees recovery for
sampling iid from certain finite vector configurations, dubbed t-designs. The required
sampling rate depends on the design order t:

(46) m = O
(
td1+2/t log2 d

)
.

For small t this rate is worse than the Gaussian analogue – but still non-trivial. However,
as soon as t exceeds 2 log d, we obtain linear scaling up to a polylogarithmic overhead.

In any case, we feel that the main purpose of this paper is not to present yet another effi-
cient solution heuristics, but to show that the phase retrieval problem can be derandomized
using t-designs. These finite vector sets lie in the vast intermediate region between random
Fourier vectors and Gaussian random vectors (the Fourier basis is a 1-design, whereas nor-
malized Gaussian random vectors correspond to an∞-design). Therefore the design order
t allows us to gradually transcend between these two extremal cases.
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[41] G. Zauner, “Quantendesigns: Grundzüge einer nichtkommutativen Designtheorie,” Ph.D. dissertation, Uni-

versity of Vienna, 1999.
[42] H. König, “Cubature formulas on spheres.” in Advances in multivariate approximation. Proceedings of

the 3rd international conference on multivariate approximation theory. Berlin: Wiley-VCH, 1999, pp.
201–211.

[43] A. Klappenecker and M. Rotteler, “Mutually unbiased bases are complex projective 2-designs,” in 2005
IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, pp. 1740–1744.

[44] R. Kueng and D. Gross, “Stabilizer states are complex projective 3-designs in qubit dimensions,” in prepa-
ration, 2013.

[45] J. M. Renes, R. Blume-Kohout, A. Scott, and C. M. Caves, “Symmetric informationally complete quantum
measurements.” J. Math. Phys., vol. 45, no. 6, pp. 2171–2180, 2004.

[46] C. Bachoc and B. Venkov, “Modular forms, lattices and spherical designs.” in Euclidean lattices, spherical
designs and modular forms. On the works of Boris Venkov. Genève: L’Enseignement Mathématique, 2001,
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8. APPENDIX

Here we briefly state an elementary proof of Lemma 6. In the main text we proved this
result using wiring diagrams. The purpose of this is to underline the relative simplicity
of wiring diagram calculations. Indeed, the elementary proof below is considerably more
cumbersome than its pictorial counterpart.

8.1. Elementary proof of Lemma 6. Let us choose an arbitrary orthonormal basis b1, . . . , bd
of V d. In the induced basis {bi ⊗ bj}di,j=1 of V d ⊗ V d the transpositions then correspond
to

1 = 1⊗ 1 =

d∑
i=1

bib
∗
i ⊗

d∑
j=1

bjb
∗
j and σ(1,2) =

d∑
i,j=1

bib
∗
j ⊗ bjb∗i .

This choice of basis furthermore allows us to write down tr2(A) for A ∈ Md ⊗ Md

explicity:

tr2(A) =

d∑
i=1

(1⊗ b∗i )A (1⊗ bi) .

Consequently we get for A,B ∈ Hd arbitrary

tr2
(
PSym2A⊗B

)
=

1

2
tr2 (A⊗B) +

1

2
tr2
(
σ(1,2)A⊗B

)
.

The latter term can be evaluated explicitly:

tr2
(
σ(1,2)A⊗B

)
=

d∑
k=1

(1⊗ b∗k)

d∑
i,j=1

bib
∗
j ⊗ bjb∗iA⊗B (1⊗ bk)

=

d∑
i,j,k=1

bib
∗
jAb

∗
kbjb

∗
iBbk =

d∑
i,j=1

〈bi, Bbj〉bib∗jA

=

(
d∑
i=1

bib
∗
i

)
B

 d∑
j=1

bjb
∗
j

A = 1B1A = BA,

and the desired result follows. Here we have used the basis representation of the identity,
namely 1 =

∑d
i=1 bib

∗
i .
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