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Summary Kesults
Bell's theorem in physics, as well as causal discovery in machine learning, I ¥ I )
both face the problem of deciding whether observed data is compatible with nSt U m&ntﬂ/l nﬂﬂf ﬂ/ltt";f
presumed causal relationships (CR). CRs can be represented by conditional Latent
independences (CI) encoded in directed acyclic graphs (DAG). The basic Treatment Factors
. o . o Assigned
question can then be casted as: given empirical data, how to decide if a presumed @
DAG is compatible with our observations? Observed
Treatment Response Entropic
Received Violations
The main problem to be circumvented comes from the fact that, in terms of o . e .
. , , , e Probabilistically: number of inequalities increases exponentially
probabilities, Cls introduce non-linear constraints. Those lead to non-convex p(a1, y1|21) + p(E1, ya|2) < 1 |
compatibility regions that are very difficult to be characterized. p(x1, 1] 20) + p(x1, y|21) < 1 Corwc;ﬁ:lble
p(x2, y1|21) + p(@2, ya2|z2) <1 InsStrumer_ltaI
Here, we advocate analyzing the joint entropies of observed variables for the (2, y1|22) + p(a, ya|21) < 1 cenaro
purpose of causal inference. The entropy region associated with any given e Entropically: just one inequality (concise but coarse-grained)
causal constraints is a convex polyhedron - a relatively simple geometric I(Y : ZIX)+ (X : Z) < H(X)

object, described completely by finitely many linear inequalities. Entropic
relations naturally describe causal relationships while still retaining e Probabilistically it is very difficult to deal with variations in the DAG (non-convex)
quantitive and useful information about causation. In this work we provide a

general algorithm and discuss its application in machine learning and I nfﬂrﬂn(:3 Of common ANCeS tﬂ s

quantum non-locality problems.

Can the correlations between n variables be explained by common ancestors
connecting at most M of them?

generﬁtl Framework.

We provide a recipe that can be applied to any DAG. It consists of 3 steps:

Step 1: Description of the unconstrained, global entropic cone

e Entropic vector v € R?": each entry is the entropy H(Xj) () o Na) = FT()\ () ()
indexed by the subset S C {1,...,n} (A1, A2, ) (A1) + H(do) + H(s)
e Defines a convex set H(A[A, A2) =0 @
e Structure not fully understood, but... I{A:BjA) =0 B=I(A:B)+I(A:C)— H(A) <0

o ...contained in the Shannon cone | , defined by
submodularity and monotonicity A hierarchy of causal relationship tests

ZizQ,...,n [(Xy: X)) < (M - 1)H(Xy)

Step 2: Choose DAG and add causal constraints

0 e ¢ Conditional independences are naturally embedded
in mutual informations
9 p(X1, Xo) = p(X1)p(X2) =) I(X1,X2)=0
e One can even relax (stable!)
[(Xl . XQ) S €
e C: cone of constraints o .
a Quantifying causal influences
e I', NC : cone of entropies subject to causal constraints e The direct causal influence C4_, 5 can be lower bounded as I(A : B|pag) < Ca_p

Step 3: Marginalization e Operational interpretation: violation of the entropic Bell inequality

as the amount of direct influence between observable variables!

oM C 2111} : set of jointly observables
B < CA—>B

e Geometrically: just restrict I'), N C' to obs. coordinates

e Algorithmically costly: I', N C' represented in terms of NO 1/L~l(7 Cﬂ/l"«t”
/

inequalities (use, e.g., Fourier-Motzkin elimination)

e Following the general framework we can derive entropic inequalities for
bipartite scenarios with arbitrary setting per party (entropic Collins-Gisin inequalities)

Final Result e We can also derive multipartite generalizations of the Braunstein-Caves inequality

. , , e All inequalities are valid for any number of measurement outcomes
e Description of marginal, causal entropic cone (I",, N C )I M

in terms of , entropic Bell inequalities” Bell scenarios with bounded shared randomness

e Bounding the shared randomness

Putlook. H(\) <C
The information-theoretic approach I(A: BJA) =0 @ “

e ,Bounded” Entropic CHSH

graphical model I(Ag: B1) +I(Ay: By) = I(Ay - By) — H(Ag) <C

e Better understanding of Werner states?

pw = v|®T)(@T| + (1 —v)I/4

e Can be applied to derive non-trivial constraints for any

e Allows the quantification of causal influences

e Assigns an operational meaning to the violation of entropic inequalities

separable | local model, 7?77 | nonlocal
OngOing/FUture Research 1 I/3 0 I66 OI. 7056
e What is the complexity class of marginal problems from the entropic V
perspective?
e Application in time series and identifiability of homophily versus Kﬁf&fenCBS
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